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¨  We know that X ~ B(n,p), but we do not know p. 
¨  We get a random sample from X, a random number 

m.  
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¨  We know that X ~ B(n,p), but we do not know p. 
¨  We get a random sample from X, a random number 

m.  
¨  The likelihood is defined as: 

L(p;X =m) = Pr(X =m | X ~ B(n, p))



The Likelihood Function 

¨  Assume we have a set of hypotheses to choose from.  
¨  Normally a hypothesis will be defined by a set of 

parameters θ. 
¨  We do not know θ, but we make some 

observations and get data D. 
¨  The likelihood of θ is L(θ;D) = Prob(D|θ). We 

are interested in the hypothesis that maximizes the 
likelihood. 



Example 

¨  We know that X ~ B(n,p), but we do not know p. 
We get a random sample from X, a random number 
m.  

¨  In this case, the data D is the number m, and the 
parameter θ is p.  

¨  The likelihood is 
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L(p;X = m) = Pr(X = m | X ~ B(n, p)) =
n
m
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Maximum Likelihood Estimate 

In the example above, the maximum is obtained  
 
for  

 
€ 

Maximum likelihood = argmaxθ L(θ;D)

€ 

ˆ p = m
n



Reminder: The Normal Distribution 



Reminder: The Normal Distribution 

We want to estimate the model parameters:             .   

We obtain a set of n independent samples: 



Reminder: The Normal Distribution 

We want to estimate the model parameters:             .   

We obtain a set of n independent samples: 



Maximum Likelihood Estimate (MLE) 



Example 

  

€ 

X1,…,Xn ~U(0,θ)
What is the maximum likelihood?



Example  

  

€ 

X1,…,Xn ~U(0,θ)
What is the maximum likelihood?

  

€ 

Assume X(1) <… < X(n )

For θ < X(n ), L(θ;D) = 0

For θ ≥ X(n ), L(θ;D) =
1
θ n

Max Likelihood :  ˆ θ = X(n )



Example: MLE of a Multinomial 

¨  We are given a universe of possible strings (e.g., 
words of a language):  

¨  Assume a model by which the strings are generated 
from a multinomial with (unknown) probabilities  
 

¨  We are given a sample from the multinomial with 
counts 

  

€ 

h1,…,ht ∈{0,1}
k

  

€ 

c1,…,ct

p1,…, pt



Generative Model 

01000010!

11111111!

00001111!

00000000!

p1 = 1/4!

p2 = 1/2!

p3 = 1/8!

p4 = 1/8!

11111111!
00001111!
01000010!
11111111!
00000000!
11111111!
01000010!
!

Unknown!
GOAL!



Generative Model 

01000010!

11111111!

00001111!

00000000!

p1 = 1/4!

p2 = 1/2!

p3 = 1/8!

p4 = 1/8!

11111111!
00001111!
01000010!
11111111!
00000000!
11111111!
01000010!
!

Unknown!
GOAL!

c1 = 2!
c2 = 3!
c3 = 1!
c4 = 1!



MLE of a Multinomial 

¨  Strings:  
¨  Counts: 
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h1,…,ht ∈{0,1}
k
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c1,…,ct
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L(p1,..., pt ;c1,…,ct ) =
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Max ci log(pi)
i
∑

s.t pi =1, pi > 0∑



Using Lagrange Multipliers 

We are interested in maximizing:  

 

 

 

 

Instead, we will consider the Lagrange  function: 

 

 

An optimal solution of the original problem corresponds to a stationary point 
of the Lagrange function.  
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Max ci log(pi)
i
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s.t pi =1, pi > 0∑
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pi), s.t. pi > 0



Using Lagrange Multipliers 

 

 

 

Compute the gradient: 

 

 

 

Equating to zero: 
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Bayesian Estimators 

¨  Maximum likelihood:  
¨  Advantage: No assumptions made on the model 

distribution. 
¨  Disadvantage: In reality we are looking for: 

 
 
Is it well defined? 

maxPr(D | ✓)

maxPr(✓ | D)



Prior and Posterior 

Sometimes we know something about the PRIOR 
distribution 
 
Then, based on Bayes rule, we can calculate the 
POSTERIOR distribution:   

Pr(✓)

Pr(✓ | D) =
Pr(D | ✓)Pr(✓)

Pr(D)



MAP (Maximum a posteriori) 

Maximum a posteriori estimation (MAP) is the mode of 
the posterior distribution: 

ˆ✓MAP = argmaxPr(✓ | D)

ˆ✓ML = argmaxPr(D | ✓)



MAP (Maximum a posteriori) 

Maximum a posteriori estimation (MAP) is the mode of 
the posterior distribution: 

ˆ✓MAP = argmaxPr(✓ | D)

ˆ✓ML = argmaxPr(D | ✓)



Example 

µ̂ML =

Pn
i=1 xi

n

x1, . . . , xn ⇠ N(µ, 1)Assume:  



Normal Prior 

Assume prior 
 
 

µ ⇠ N(0, 1)

log(Pr(x1, . . . , xn | µ)) = �n

2

log(2⇡)�
Pn

i=1(xi � µ)
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Normal Prior 

Assume prior 
 
 

µ ⇠ N(0, 1)

µ̂MAP = argmax

µ
{�µ

2 �
nX

i=1

(xi � µ)

2}

µ̂MAP =

Pn
i=1 xi

n+ 1
µ̂ML =

Pn
i=1 xi

n



Posterior of a Normal Prior 

Assume prior 
 
 

µ ⇠ N(0, 1)

Pr(µ | x1, . . . , xn

) / exp
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Choosing a prior for B(n,p) 

X ⇠ B(n, p)

p̂ML =
m

n

X = mOne sample: 



The Beta Distribution 

X ⇠ Beta(�,⇥) � > 0,⇥ > 0

f(x) =
x↵�1(1� x)��1

B(�,⇥)

µ = E[X] =
�

�+ ⇥



Posterior with a Beta Prior 

X ⇠ B(n, p)

Assume prior : p ⇠ Beta(�,⇥)

Pr(p | X = m,�,⇥) ⇥
✓
n

m

◆
pm(1� p)n�m · p

��1(1� p)⇥�1

B(�,⇥)

Pr(p | X = m,�,⇥) ⇥ pm+��1(1� p)n�m+⇥�1



Posterior with a Beta Prior 

Pr(p | X = m,�,⇥) ⇥ pm+��1(1� p)n�m+⇥�1

Pr(p | X = m,�,⇥) ⇥ Beta(m+ �, n�m+ ⇥)

If the prior distribution is Beta then the posterior distribution is Beta as well. 
 
A conjugate prior. 

p̂MAP =
m+ ↵� 1

n+ ↵+ � � 2



Classification (Naïve Bayes) 

Cholesterol 
level 

Heart Attack 
(HA) 

x1 1 

x2 1 

x3 0 

x4 1 

x5 0 

x6 0 

x7 0 

Given a new individual, can we predict 
whether the individual will get a heart attack 
Based on his cholesterol level? 



Classification (Naïve Bayes) 

Cholesterol 
level 

Heart Attack 
(HA) 

x1 1 

x2 1 

x3 0 

x4 1 

x5 0 

x6 0 

x7 0 

Given a new individual, can we predict 
whether the individual will get a heart attack 
Based on his cholesterol level? 

Assumption: Cholesterol levels are normally 
distributed with a different mean in the 1 and 0 
sets. 

Pr(x | HA = 1) ⇠ N(µ1,�
2)

Pr(x | HA = 0) ⇠ N(µ0,�
2)

can be estimated using MLE  



Classification (Naïve Bayes) 

Decision rule: 



Multiple Variables 

x1 x2 … xn y 

195 17 … 117 1 

195 24 … 114 1 

184 13 … 117 0 

250 22 … 111 1 

173 15 … 108 0 

185 18 … 145 0 

178 22 … 136 0 

Assumptions: 
 
1.  Normal marginal distributions 

 
2.  Variables are independent 



Multiple Variables 



Multiple Variables 



Naïve Bayes 

¨  A Naïve assumption. 
¨  Easy to implement. 
¨  Often works in practice. 
¨  Interpretation: A weighted sum of evidence. 
¨  Allows for the incorporation of features of different 

distributions.  
¨  Requires small amounts of data 



Naïve Bayes Might Break… 
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The Multivariate Normal Distribution 

is a multivariate normal distribution 
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The Multivariate Normal Distribution 

is a multivariate normal distribution 

Example: 
 
 



The Multivariate Normal Distribution 

¨  Notation:  
¨  The variance-covariance matrix is 

¨  If we do not use Naïve Bayes we need to estimate 
O(k2) parameters. 



Reminder: K-means objective 

Given: 
¤ Vectors        
¤ A number K 

Objective: 
 
 
 
 



K-Means: A Likelihood Formulation 

¨  There are unknown clusters: S1,…,Sk. 
¨  The points in Si are distributed  
¨  Each point xi originates from a cluster ci. 



Mixture of Gaussians 

¨  There are unknown clusters: S1,…,Sk. 
¨  The points in Si are distributed  
¨  Each point xi originates from cluster Sj with 

probability pj. 
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In one dimension 

¨  There are unknown clusters: S1,…,Sk. 
¨  The points in Si are distributed  
¨  Each point xi originates from cluster Sj with 

probability pj. 
 
 



For every i, we choose:  



The Expectation-Maximization Algorithm 

¨  Start with a guess: 
¨  In each iteration t+1 set:  



The Expectation-Maximization Algorithm 

¨  Start with a guess: 
¨  In each iteration t+1 set:  



The Expectation-Maximization Algorithm 

By construction: 



The Expectation-Maximization Algorithm 

Conclusion: The likelihood is non-decreasing in each iteration. 
 
Stopping rule: When the likelihood flattens. 



Expectation Maximization (EM) 

¨  D – given data 
¨     – parameters that need to be estimated 
¨  Z – missing (latent) variables 

1.  E-step: 
2.  M-step:   

Q(✓ | ✓t) = EZ|D,✓t [log(Pr(D,Z | ✓)]
✓t+1 := argmax

✓
Q(✓ | ✓t)







EM - Comments 

¨  No guarantee of optimization to local maximum. 
¨  No guarantee of running times. Often it takes many iterations 

to converge. 

¨  Efficiency: no matrix inversion is needed (e.g., in Newton). 
Generalized EM – no need to find the max in the M-step. 

¨  Easy to implement. 
¨  Numerical stability. 

¨  Monotone – it is easy to ensure correctness in EM. 

¨  Interpretation – provides interpretation for the latent 
variables. 


