Introduction to Machine Learning

Maximum Likelihood and Bayesian Inference

- □ We know that $X \sim B(n,p)$, but we do not know p.
- We get a random sample from X, a random numberm.

$$\Pr(X = m \mid X \sim B(n, p)) = \begin{pmatrix} n \\ m \end{pmatrix} p^{m} (1 - p)^{n - m}$$

- □ We know that $X \sim B(n,p)$, but we do not know p.
- We get a random sample from X, a random number
 m.
- □ The likelihood is defined as:

$$L(p; X = m) = Pr(X = m \mid X \sim B(n, p))$$

The Likelihood Function

- Assume we have a set of hypotheses to choose from.
- \square Normally a hypothesis will be defined by a set of parameters θ .
- $\hfill\Box$ We do not know θ , but we make some observations and get data D.
- □ The likelihood of θ is L(θ ;D) = Prob(D| θ). We are interested in the hypothesis that maximizes the likelihood.

Example

- □ We know that $X \sim B(n,p)$, but we do not know p. We get a random sample from X, a random number m.
- \square In this case, the data D is the number m, and the parameter θ is p.
- The likelihood is

$$L(p; X = m) = \Pr(X = m \mid X \sim B(n, p)) = \binom{n}{m} p^m (1 - p)^{n - m}$$

Maximum Likelihood Estimate

 $Maximum\ likelihood = argmax_{\theta}\ L(\theta; D)$

In the example above, the maximum is obtained

for
$$\hat{p} = \frac{m}{n}$$

Reminder: The Normal Distribution

$$X \sim N(\mu, \sigma^2)$$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Reminder: The Normal Distribution

We obtain a set of n independent samples:

$$x_1, \dots, x_n \sim N(\mu, \sigma^2)$$

We want to estimate the model parameters: μ, σ .

Reminder: The Normal Distribution

We obtain a set of n independent samples:

$$x_1, \ldots, x_n \sim N(\mu, \sigma^2)$$

We want to estimate the model parameters: μ, σ .

$$L(\mu, \sigma; x_1, \dots, x_n) = Pr(x_1, \dots, x_n | \mu, \sigma) =$$

$$= \prod_{i=1}^{n} f(x_i) = \frac{1}{\sigma^n (2\pi)^{n/2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2}$$

Maximum Likelihood Estimate (MLE)

$$\hat{\mu} = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$\hat{\sigma} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \hat{\mu})^2}{n}}$$

Example

$$X_1,...,X_n \sim U(0,\theta)$$

What is the maximum likelihood?

Example

$$X_1,\ldots,X_n \sim U(0,\theta)$$

What is the maximum likelihood?

Assume
$$X_{(1)} < ... < X_{(n)}$$

For
$$\theta < X_{(n)}$$
, $L(\theta;D) = 0$

For
$$\theta \ge X_{(n)}$$
, $L(\theta;D) = \frac{1}{\theta^n}$

Max Likelihood:
$$\hat{\theta} = X_{(n)}$$

Example: MLE of a Multinomial

- We are given a universe of possible strings (e.g., words of a language): $h_1, \ldots, h_t \in \{0,1\}^k$
- Assume a model by which the strings are generated from a multinomial with (unknown) probabilities p_1, \ldots, p_t
- □ We are given a sample from the multinomial with counts C_1, \ldots, C_t

Generative Model

```
p_1 = 1/4
            01000010
                                  11111111
                                  00001111
                                  01000010
p_2 = 1/2
            11111111
                                  11111111
                                  0000000
                                  11111111
p_3 = 1/8
            00001111
                                  01000010
p_4 = 1/8
            0000000
                     Unknown
    GOAL
```

Generative Model

```
p_1 = 1/4
            01000010
                                   11111111
                                   00001111
                                   01000010
p_2 = 1/2
             11111111
                                   11111111
                                   0000000
                                   11111111
p_3 = 1/8 \qquad 00001111
                                   01000010
p_4 = 1/8
            00000000
                     Unknown
     GOAL
```

$$c_1 = 2$$
 $c_2 = 3$
 $c_3 = 1$
 $c_4 = 1$

MLE of a Multinomial

- \square Strings: $h_1, \ldots, h_t \in \{0,1\}^k$
- \square Counts: C_1, \ldots, C_t

$$L(p_1, \dots, p_t; c_1, \dots, c_t) = \binom{n}{c_1} \binom{n - c_1}{c_2} \cdots \binom{n - c_1 - \dots - c_{t-1}}{c_t} p_1^{c_1} p_2^{c_{21}} \cdots p_t^{c_t}$$

$$Max \sum_{i} c_{i} \log(p_{i})$$

$$s.t \sum_{i} p_{i} = 1, p_{i} > 0$$

Using Lagrange Multipliers

We are interested in maximizing:

$$Max \sum_{i} c_{i} \log(p_{i})$$

$$s.t \sum p_i = 1, p_i > 0$$

Instead, we will consider the Lagrange function:

$$\max \sum_{i} c_i \log(p_i) + \lambda (1 - \sum_{i} p_i), \ s.t. \ p_i > 0$$

An optimal solution of the original problem corresponds to a stationary point of the Lagrange function.

Using Lagrange Multipliers

$$f(\vec{p}, \lambda) = \sum_{i} c_i \log(p_i) + \lambda (1 - \sum_{i} p_i)$$

Compute the gradient:

$$\frac{\partial f}{\partial p_i} = \frac{c_i}{p_i} - \lambda \qquad \frac{\partial f}{\partial \lambda} = 1 - \sum_i p_i$$

Equating to zero:

$$p_i = \frac{c_i}{\lambda}, \lambda = \sum_i c_i = n$$

Bayesian Estimators

- lacksquare Maximum likelihood: $\max Pr(D \mid heta)$
- Advantage: No assumptions made on the model distribution.
- Disadvantage: In reality we are looking for:

$$\max Pr(\theta \mid D)$$

Is it well defined?

Prior and Posterior

Sometimes we know something about the PRIOR distribution $Pr(\theta)$

Then, based on Bayes rule, we can calculate the **POSTERIOR** distribution:

$$Pr(\theta \mid D) = \frac{Pr(D \mid \theta)Pr(\theta)}{Pr(D)}$$

MAP (Maximum a posteriori)

Maximum a posteriori estimation (MAP) is the mode of the posterior distribution:

$$\hat{\theta}_{MAP} = \arg\max Pr(\theta \mid D)$$

$$\hat{\theta}_{ML} = \arg \max Pr(D \mid \theta)$$

MAP (Maximum a posteriori)

Maximum a posteriori estimation (MAP) is the mode of the posterior distribution:

$$\hat{\theta}_{MAP} = \arg \max Pr(\theta \mid D)$$

$$\hat{\theta}_{ML} = \arg\max Pr(D \mid \theta)$$

$$\hat{\theta}_{MAP} = \arg \max Pr(D \mid \theta) Pr(\theta)$$

Example

Assume: $x_1, \ldots, x_n \sim N(\mu, 1)$

$$\hat{\mu}_{ML} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Normal Prior

Assume prior $\mu \sim N(0,1)$

$$\log(Pr(x_1, \dots, x_n \mid \mu)) = -\frac{n}{2}\log(2\pi) - \frac{\sum_{i=1}^n (x_i - \mu)^2}{2}$$

$$\log(Pr(\mu)) = -\frac{1}{2}\log(2\pi) - \frac{\mu^2}{2}$$

$$\hat{\mu}_{MAP} = \arg\max_{\mu} \{-\mu^2 - \sum_{i=1}^{\infty} (x_i - \mu)^2\}$$

Normal Prior

Assume prior $\mu \sim N(0,1)$

$$\hat{\mu}_{MAP} = \arg\max_{\mu} \{-\mu^2 - \sum_{i=1}^{\infty} (x_i - \mu)^2\}$$

$$\hat{\mu}_{MAP} = \frac{\sum_{i=1}^{n} x_i}{n+1}$$
 $\hat{\mu}_{ML} = \frac{\sum_{i=1}^{n} x_i}{n}$

Posterior of a Normal Prior

Assume prior $\mu \sim N(0,1)$

$$Pr(\mu \mid x_1, \dots, x_n) \propto exp\left(-\frac{\left(\mu - \sum_{i=1}^n \frac{x_i}{n+1}\right)^2}{\frac{2}{n+1}}\right)$$

$$\mu \sim N\left(\frac{\sum_{i=1}^{n} x_i}{n+1}, \frac{1}{n+1}\right)$$

Choosing a prior for B(n,p)

$$X \sim B(n,p)$$

One sample: X=m

$$\hat{p}_{ML} = \frac{m}{n}$$

The Beta Distribution

$$X \sim Beta(\alpha, \beta) \quad \alpha > 0, \beta > 0$$

$$f(x) = \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{B(\alpha, \beta)}$$

$$\mu = E[X] = \frac{\alpha}{\alpha + \beta}$$

Posterior with a Beta Prior

$$X \sim B(n,p)$$

Assume prior: $p \sim Beta(\alpha, \beta)$

$$Pr(p \mid X = m, \alpha, \beta) \propto \binom{n}{m} p^m (1-p)^{n-m} \cdot \frac{p^{\alpha-1} (1-p)^{\beta-1}}{B(\alpha, \beta)}$$

$$Pr(p \mid X = m, \alpha, \beta) \propto p^{m+\alpha-1} (1-p)^{n-m+\beta-1}$$

Posterior with a Beta Prior

$$Pr(p \mid X = m, \alpha, \beta) \propto p^{m+\alpha-1} (1-p)^{n-m+\beta-1}$$

$$Pr(p \mid X = m, \alpha, \beta) \sim Beta(m + \alpha, n - m + \beta)$$

$$\hat{p}_{MAP} = \frac{m + \alpha - 1}{n + \alpha + \beta - 2}$$

If the prior distribution is Beta then the posterior distribution is Beta as well.

A conjugate prior.

Classification (Naïve Bayes)

Cholesterol level	Heart Attack (HA)
\mathbf{x}_1	1
x_2	1
x ₃	0
x_4	1
x_{5}	0
x ₆	0
x ₇	0

Given a new individual, can we predict whether the individual will get a heart attack Based on his cholesterol level?

Classification (Naïve Bayes)

Cholesterol level	Heart Attack (HA)
\mathbf{x}_1	1
x_2	1
x ₃	0
x_4	1
x ₅	0
x ₆	0
x ₇	0

Given a new individual, can we predict whether the individual will get a heart attack Based on his cholesterol level?

Assumption: Cholesterol levels are normally distributed with a different mean in the 1 and 0 sets.

$$Pr(x \mid HA = 1) \sim N(\mu_1, \sigma^2)$$

$$Pr(x \mid HA = 0) \sim N(\mu_0, \sigma^2)$$

 μ_0,μ_1,σ can be estimated using MLE

Classification (Naïve Bayes)

$$\frac{Pr(HA=1 \mid x)}{Pr(HA=0 \mid x)} = \frac{Pr(HA=1)}{Pr(HA=0)} e^{\frac{(x-\mu_0)^2 - (x-\mu_1)^2}{2\sigma^2}}$$

Decision rule:

$$\log\left(\frac{Pr(HA=1)}{Pr(HA=0)}\right) + \frac{(x-\mu_0)^2 - (x-\mu_1)^2}{2\sigma^2} > 0$$

Multiple Variables

x ₁	x ₂		x _n	у
195	17	•••	117	1
195	24	•••	114	1
184	13	•••	117	0
250	22	•••	111	1
173	15	•••	108	0
185	18	•••	145	0
178	22	•••	136	0

Assumptions:

- 1. Normal marginal distributions
- 2. Variables are independent

$$Pr(x_i \mid y = k) \sim N(\mu_{ik}, \sigma_i^2)$$

Multiple Variables

$$Pr(y = 1 \mid x_1, \dots, x_n) = \frac{Pr(x_1, \dots, x_n \mid y = 1)Pr(y = 1)}{Pr(x_1, \dots, x_n)}$$

$$= \frac{Pr(x_1 \mid y = 1) \cdots Pr(x_n \mid y = 1)Pr(y = 1)}{Pr(x_1, \dots, x_n)}$$

Multiple Variables

$$Pr(y = 1 \mid x_1, \dots, x_n) = \frac{Pr(x_1, \dots, x_n \mid y = 1)Pr(y = 1)}{Pr(x_1, \dots, x_n)}$$

$$= \frac{Pr(x_1 \mid y = 1) \cdots Pr(x_n \mid y = 1)Pr(y = 1)}{Pr(x_1, \dots, x_n)}$$

$$\log \frac{Pr(y=1 \mid x_1, \dots, x_n)}{Pr(y=0 \mid x_1, \dots, x_n)} = \log \frac{Pr(y=1)}{Pr(y=0)} + \sum_{i} \log \frac{Pr(x_i \mid y=1)}{Pr(x_i \mid y=0)}$$

$$= \log \frac{Pr(y=1)}{Pr(y=0)} + \sum_{i} \frac{(x - \mu_{i0})^2 - (x - \mu_{i1})^2}{2\sigma_i^2}$$

Naïve Bayes

- A Naïve assumption.
- Easy to implement.
- Often works in practice.
- Interpretation: A weighted sum of evidence.
- Allows for the incorporation of features of different distributions.
- Requires small amounts of data

Naïve Bayes Might Break...

The Multivariate Normal Distribution

$$z_1,\ldots,z_n \sim N(0,1)$$

 $x=Az+\mu$ is a multivariate normal distribution

The Multivariate Normal Distribution

$$z_1,\ldots,z_n \sim N(0,1)$$

 $x=Az+\mu$ is a multivariate normal distribution

Example:
$$A=\begin{pmatrix}2&1\\-2&1\end{pmatrix}$$

$$\Sigma=AA^t=\begin{pmatrix}5&-3\\-3&5\end{pmatrix}$$

The Multivariate Normal Distribution

- $lue{}$ Notation: $X \sim MVN(\mu, \Sigma)$
- $lue{}$ The variance-covariance matrix is \sum

$$f(x) = \frac{1}{\sqrt{(2\pi)^k |\Sigma|}} e^{-\frac{1}{2}(x-\mu)^t \Sigma^{-1}(x-\mu)}$$

 If we do not use Naïve Bayes we need to estimate O(k²) parameters.

Reminder: K-means objective

Given:

- lacksquare Vectors x_1,\ldots,x_n
- A number K

Objective:

$$\min_{\mu_1,\dots,\mu_K,S_1,\dots,S_K} \sum_{i=1}^n \sum_{j\in S_i} ||x_j - \mu_i||^2$$

K-Means: A Likelihood Formulation

- \square There are unknown clusters: S_1, \ldots, S_k .
- extstyle ext
- \square Each point x_i originates from a cluster c_i .

$$\theta = (c_1, \dots, c_n, \mu_1, \dots, \mu_k)$$

$$\log L(\theta; x_1, \dots, x_n) = constant - \sum_{i=1}^n ||x_i - \mu_{c_i}||^2$$

Mixture of Gaussians

- \square There are unknown clusters: $S_1, ..., S_k$.
- extstyle ext
- \square Each point x_i originates from cluster S_j with probability p_j .

$$S_1 \sim MVN\left((10, 10), \begin{pmatrix} 29.25 & 13.5 \\ 13.5 & 20.25 \end{pmatrix}\right)$$

$$S_2 \sim MVN\left((0, 0), \begin{pmatrix} 9 & -3.3 \\ -3.3 & 18 \end{pmatrix}\right)$$

$$p_1 = 0.25, p_2 = 0.75$$

In one dimension

- \square There are unknown clusters: $S_1, ..., S_k$.
- lacksquare The points in S, are distributed $N(\mu_i,\sigma_i^2)$
- \square Each point x_i originates from cluster S_j with probability p_i .

probability
$$p_{j}$$
.
$$f_{j}(x) = \frac{1}{\sqrt{2\pi\sigma_{j}^{2}}}e^{-\frac{(x-\mu_{j})^{2}}{2\sigma_{j}^{2}}}$$

$$L((\vec{p}, \vec{\mu}, \vec{\sigma}); \vec{x}) = \prod_{i=1}^{n} \sum_{j=1}^{k} p_j f_j(x_i)$$

For every i, we choose:

$$a_{ij} \ge 0, \sum_{i} a_{ij} = 1$$

$$\log L((\vec{p}, \vec{\mu}, \vec{\sigma}); \vec{x}) = \sum_{i=1}^{n} \log \left(\sum_{j=1}^{k} p_j f_j(x_i) \right)$$

$$= \sum_{i=1}^{n} \log \left(\sum_{j=1}^{k} a_{ij} \frac{p_j f_j(x_i)}{a_{ij}} \right)$$

$$\geq \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \log(p_j f_j(x_i)) - a_{ij} \log(a_{ij})$$

- lacksquare Start with a guess: (μ_i^0,σ_i^0)
- □ In each iteration t+1 set:

$$a_{ij} = Pr(x_i \in S_j \mid \vec{p}^t, \vec{\mu}^t, \vec{\sigma}^t) = \frac{p_j^t f_j^t(x_i)}{\sum_{m=1}^k p_m^t f_m^t(x_i)}$$
$$(\vec{p}^{t+1}, \vec{\mu}^{t+1}, \vec{\sigma}^{t+1}) = \arg\max_{\vec{\mu}, \vec{\sigma}, \vec{p}} \sum_{i=1}^n \sum_{j=1}^n a_{ij} \log(p_j f_j(x_i))$$

- lacksquare Start with a guess: (μ_i^0,σ_i^0)
- □ In each iteration t+1 set:

$$a_{ij} = Pr(x_i \in S_j \mid \vec{p}^t, \vec{\mu}^t, \vec{\sigma}^t) = \frac{p_j^t f_j^t(x_i)}{\sum_{m=1}^k p_m^t f_m^t(x_i)}$$

$$p_j^{t+1} = \frac{\sum_{i=1}^n a_{ij}}{n}$$

$$\mu_j^{t+1} = \frac{\sum_{i=1}^n a_{ij} x_i}{\sum_{i=1}^n a_{ij}}$$

$$\sigma_j^{t+1} = \frac{\sum_{i=1}^n a_{ij} (x_i - \mu_j^{t+1})^2}{\sum_{i=1}^n a_{ij}}$$

$$g(\vec{p}, \vec{\mu}, \vec{\sigma}) := \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \log(p_j f_j(x_i)) - a_{ij} \log(a_{ij})$$

By construction:

$$\log L((\vec{p}, \vec{\mu}, \vec{\sigma}); \vec{x}) \ge g(\vec{p}, \vec{\mu}, \vec{\sigma})$$

$$\log L((\vec{p}^t, \vec{\mu}^t, \vec{\sigma}^t); \vec{x}) = g(\vec{p}^t, \vec{\mu}^t, \vec{\sigma}^t)$$

$$\log L((\vec{p}^{t+1}, \vec{\mu}^{t+1}, \vec{\sigma}^{t+1}); \vec{x}) \geq g(\vec{p}^{t+1}, \vec{\mu}^{t+1}, \vec{\sigma}^{t+1})$$

$$\geq g(\vec{p}^{t}, \vec{\mu}^{t}, \vec{\sigma}^{t})$$

$$= \log L((\vec{p}^{t}, \vec{\mu}^{t}, \vec{\sigma}^{t}); \vec{x})$$

Conclusion: The likelihood is non-decreasing in each iteration.

Stopping rule: When the likelihood flattens.

$$\log L((\vec{p}^{t+1}, \vec{\mu}^{t+1}, \vec{\sigma}^{t+1}); \vec{x}) \geq g(\vec{p}^{t+1}, \vec{\mu}^{t+1}, \vec{\sigma}^{t+1})$$

$$\geq g(\vec{p}^{t}, \vec{\mu}^{t}, \vec{\sigma}^{t})$$

$$= \log L((\vec{p}^{t}, \vec{\mu}^{t}, \vec{\sigma}^{t}); \vec{x})$$

Expectation Maximization (EM)

- □ D − given data
- $\square \theta$ parameters that need to be estimated
- □ Z missing (latent) variables

- 1. E-step: $Q(\theta \mid \theta_t) = E_{Z|D,\theta_t}[\log(Pr(D,Z \mid \theta))]$
- 2. M-step: $\theta_{t+1} := \arg \max_{\theta} Q(\theta \mid \theta_t)$

$$\log Pr(D \mid \theta) = \log \left(\sum_{z} Pr(D, z \mid \theta) \right)$$

$$= \log \left(\sum_{z} a_{z} \frac{Pr(D, z \mid \theta)}{a_{z}} \right)$$

$$\geq \sum_{z} a_{z} \log \left(Pr(D, z \mid \theta) \right) - \sum_{z} a_{z} \log(a_{z})$$

$$= Q(\theta \mid \theta_{t}) - constant$$

$$\log(Pr(D \mid \theta_{t+1})) \geq Q(\theta_{t+1} \mid \theta_t) - constant$$

$$\geq Q(\theta_t \mid \theta_t) - constant = \log(Pr(D \mid \theta_t))$$

$$g(\theta) = Q(\theta \mid \theta_t) - \sum_{z} a_z \log(a_z)$$

$$\log Pr(D \mid \theta_{t+1}) \ge g(\theta_{t+1}) \ge g(\theta_t) = \log Pr(D \mid \theta_t)$$

EM - Comments

- No guarantee of optimization to local maximum.
- No guarantee of running times. Often it takes many iterations to converge.
- Efficiency: no matrix inversion is needed (e.g., in Newton).
 Generalized EM no need to find the max in the M-step.
- Easy to implement.
- Numerical stability.
- \square Monotone it is easy to ensure correctness in EM.
- Interpretation provides interpretation for the latent variables.