Introduction to Machine Learning

Regression

Computer Science, Tel-Aviv University, 201 3-14

Classification

Input: X
\square Real valued, vectors over real.
\square Discrete values ($0,1,2, \ldots$)
\square Other structures (e.g., strings, graphs, etc.)
Output: Y
\square Discrete ($0,1,2, \ldots$)

Regression

Input: X
\square Real valued, vectors over real.
\square Discrete values ($0,1,2, \ldots$)
Output: Y
\square Real valued, vectors over real.

Examples: Regression

\square Weight + height cholesterol level
\square Age + gender \longrightarrow time spent in front of the TV
\square Past choices of a user
'Netflix score'
\square Profile of a job (user, machine, time) Memory usage of a submitted process.

Linear Regression

Input: A set of points ($\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$)
\square Assume there is a linear relation between y and x. $y \approx a x+b$

Linear Regression

Input: A set of points ($\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$)
\square Assume there is a linear relation between y and x.

$$
y \approx a x+b
$$

\square Find a, b by solving

Regression: Minimize the Residuals

Regression: Minimize the Residuals

Likelihood Formulation

Model assumptions:
$y=a x+b+\epsilon$
$\epsilon \sim N\left(0, \sigma^{2}\right)$
Input:
Data $=\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$

Likelihood Formulation

Model assumptions:
$y=a x+b+\epsilon$
$\epsilon \sim N\left(0, \sigma^{2}\right)$
Input:
Data $=\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$
$\log L($ Data $; a, b, \sigma)=-\frac{1}{2 \sigma^{2}} \sum_{i}\left(y_{i}-a x_{i}-b\right)^{2}-\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)$

Likelihood Formulation

Model assumptions:
$y=a x+b+\epsilon$
$\epsilon \sim N\left(0, \sigma^{2}\right)$
Input:
Data $=\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$
$\log L($ Data $; a, b, \sigma)=-\frac{1}{2 \sigma^{2}} \sum_{i}\left(y_{i}-a x_{i}-b\right)^{2}-\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)$
Likelihood maximized when $(a, b)=\arg \min _{a, b} \sum_{i}\left(y_{i}-a x_{i}-b\right)^{2}$

$$
y=a x+b+\epsilon
$$

Note:
$a, x_{i} \in R^{d} \quad y, b \in R$
We can add another variable $x_{d+1}=1$, and set $\mathrm{a}_{\mathrm{d}+1}=\mathrm{b}$.
Therefore, without loss of generality

$$
y=a \cdot x+\epsilon
$$

Matrix Notations

$f(a)=\sum_{i}\left(y_{i}-a \cdot x_{i}\right)^{2}$
$y=\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right) \quad a=\left(\begin{array}{c}a_{1} \\ \vdots \\ a_{d}\end{array}\right) \quad x_{i}=\left(x_{i 1} \ldots x_{i d}\right)$
$X=\left(\begin{array}{c}-x_{1}- \\ \ldots \\ \ldots \\ \cdots \\ -x_{n}-\end{array}\right)=\left(\begin{array}{ccc}\mid & \ldots & \mid \\ X_{1} & \ldots & X_{d} \\ \mid & \ldots & \mid\end{array}\right)$

The Normal Equations

$$
\begin{aligned}
& f(a)=\sum_{i}\left(y_{i}-a \cdot x_{i}\right)^{2} \\
& \frac{\partial f}{\partial a_{j}}=-2 \sum_{i}\left(y_{i}-a \cdot x_{i}\right) x_{i j}=-2 X_{j}^{t}(y-X a) \\
& X^{t} y=X^{t} X a
\end{aligned}
$$

$$
a=\left(X^{t} X\right)^{-1} X^{t} y
$$

$$
X^{t}(y-X a)=0
$$

Functions over n-dimensions

For a function $f\left(x_{1}, \ldots, x_{n}\right)$, the gradient is the vector of partial derivatives:

$$
\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)
$$

In one dimension: derivative.

Gradient Descent

\square Goal: Minimize a function $f\left(x_{1}, \ldots, x_{n}\right)$
\square Algorithm:

1. Start from a point $\left(x_{1}^{0}, \ldots, x_{n}^{0}\right)$
2. Compute $u=\nabla f\left(x_{1}^{i}, \ldots, x_{n}^{i}\right)$
3. Update $x^{i+1}:=x^{i}-\alpha \cdot u$
4. Return to (2), unless converged.

Gradient Descent

$$
\begin{aligned}
f(a) & =\sum_{i}\left(y_{i}-a \cdot x_{i}\right)^{2} \\
\frac{\partial f}{\partial a_{j}} & =-2 \sum_{i}\left(y_{i}-a \cdot x_{i}\right) x_{i j}=-2 X_{j}^{t}(y-X a)
\end{aligned}
$$

Gradient Descent iteration:

$$
a_{k+1}=a_{k}+\alpha X^{t}\left(y-X a_{k}\right)
$$

Advantage: simple, efficient.

Online Least Squares

$$
\begin{aligned}
f(a) & =\sum_{i}\left(y_{i}-a \cdot x_{i}\right)^{2} \\
\frac{\partial f}{\partial a_{j}} & =-2 \sum_{i}\left(y_{i}-a \cdot x_{i}\right) x_{i j}=-2 X_{j}^{t}(y-X a)
\end{aligned}
$$

Online update step:

$$
a_{k+1}=a_{k}+\alpha\left(y_{k+1}-x_{k+1} a_{k}\right) x_{k+1}^{t}
$$

Advantage: Efficient, similar to perceptron.

Singularity issues

$$
a=\left(X^{t} X\right)^{-1} X^{t} y
$$

\square Not very efficient since we need to inverse a matrix.
\square The solution is unique if $X^{t} X$ is invertible.
\square If $X^{t} X$ is singular, we have an infinite number of solutions to the equations. What is the solution minimizing $\|y-X a\|_{2}$?

The Singular Case

The Singular Case

The Singular Case

The Singular Case

Risk of Overfitting

\square Say we have a very large number of variables (d is large).
\square When the number of variables is large we usually have colinear variables, and therefore $X^{t} X$ is singular.
\square Even if $X^{t} X$ is non-singular, there is a risk for over-fitting. For instance, if $\mathrm{d}=\mathrm{n}$ we can get

$$
a=X^{-1} y \quad\|y-X a\|_{2}=0
$$

\square Intuitively, we want a small number of variables to explain y.

Regularization

Let λ be a regularization parameter. Ideally, we need to solve the following:
$\hat{a}=\arg \min _{a}\left\{\|y-X a\|_{2}^{2}+\lambda\|a\|_{0}\right\}$
This is a hard problem (NP-hard).

Shrinkage Methods

Lasso regression:

$$
\hat{a}=\arg \min _{a}\left\{\|y-X a\|_{2}^{2}+\lambda\|a\|_{1}\right\}
$$

Ridge regression:

$$
\hat{a}=\arg \min _{a}\left\{\|y-X a\|_{2}^{2}+\lambda\|a\|_{2}^{2}\right\}
$$

Ridge Regression

$$
\begin{aligned}
& \hat{a}=\arg \min _{a}\left\{\sum_{i=1}^{n}\left(y_{i}-x_{i} \cdot a\right)^{2}+\lambda \sum_{i} a_{i}^{2}\right\} \\
& \frac{\partial f}{\partial a_{j}}=-2 X_{j}^{t}(y-X a)+2 \lambda a_{j}
\end{aligned}
$$

Ridge Regression

$$
\begin{aligned}
& \hat{a}=\arg \min _{a}\left\{\sum_{i=1}^{n}\left(y_{i}-x_{i} \cdot a\right)^{2}+\lambda \sum_{i} a_{i}^{2}\right\} \\
& \frac{\partial f}{\partial a_{j}}=-2 X_{j}^{t}(y-X a)+2 \lambda a_{j} \\
& X^{t} y=\left(X^{t} X+\lambda I\right) a
\end{aligned}
$$

Ridge Regression

$$
\begin{aligned}
& \hat{a}=\arg \min _{a}\left\{\sum_{i=1}^{n}\left(y_{i}-x_{i} \cdot a\right)^{2}+\lambda \sum_{i} a_{i}^{2}\right\} \\
& \frac{\partial f}{\partial a_{j}}=-2 X_{j}^{t}(y-X a)+2 \lambda a_{j} \\
& X^{t} y=\left(X^{t} X+\lambda I\right) a \\
& \hat{a}=\left(X^{t} X+\lambda I\right)^{-1} X^{t} y
\end{aligned}
$$

Positive definite and therefore nonsingular

Ridge Regression - Bayesian View

$$
\begin{aligned}
& y=\sum_{j} a_{j} X_{j}+\epsilon \quad \epsilon \sim N\left(0, \sigma^{2}\right) \\
& a_{j} \sim N\left(0, \tau^{2}\right) \Leftarrow \text { Prior on a }
\end{aligned}
$$

Ridge Regression - Bayesian View

$$
\begin{aligned}
& y=\sum_{j} a_{j} x_{j}+\epsilon \quad \epsilon \sim N\left(0, \sigma^{2}\right) \\
& a_{j} \sim N\left(0, \tau^{2}\right) \Leftarrow \text { Prior on a }
\end{aligned}
$$

$$
\begin{aligned}
\log \text { Posterior }(a \mid \sigma, \tau, \text { Data })= & -\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-a \cdot x_{i}\right)^{2}-\frac{1}{2 \tau^{2}} \sum_{i=1}^{d} a_{i}^{2} \\
& -\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{d}{2} \log \left(2 \pi \tau^{2}\right)
\end{aligned}
$$

Maximizing the posterior is equivalent to Ridge with $\lambda=\frac{\sigma^{2}}{\tau^{2}}$

Lasso Regression

$$
\begin{aligned}
& \hat{a}=\arg \min _{a}\left\{\|y-X a\|_{2}^{2}+\lambda\|a\|_{1}\right\} \\
& \min _{a}\left\{a^{t}\left(X^{t} X\right) a-2 y^{t} X a+\lambda \sum_{i}\left|a_{i}\right|\right\}
\end{aligned}
$$

Lasso Regression

$$
\begin{aligned}
& \hat{a}=\arg \min _{a}\left\{\|y-X a\|_{2}^{2}+\lambda\|a\|_{1}\right\} \\
& \min _{a}\left\{a^{t}\left(X^{t} X\right) a-2 y^{t} X a+\lambda \sum_{i}\left|a_{i}\right|\right\}
\end{aligned}
$$

The above is equivalent to the following quadratic program:

$$
\begin{array}{|ll}
& \min _{a, b}\left\{a^{t}\left(X^{t} X\right) a-2 y^{t} X a+\lambda \sum_{i=1}^{d} b_{i}\right\} \\
\text { s.t. } & b_{i} \geq a_{i}, \quad i=1, \ldots, d \\
& b_{i} \geq-a_{i}, \quad i=1, \ldots, d
\end{array}
$$

Lasso Regression - Bayesian View

$$
\begin{gathered}
y=\sum_{j} a_{j} x_{j}+\epsilon \quad \epsilon \sim N\left(0, \sigma^{2}\right) \\
a_{j} \sim \operatorname{Laplace}\left(0, \frac{2 \sigma^{2}}{\lambda}\right) \\
p d f\left(a_{j}\right)=\frac{\lambda}{4 \sigma^{2}} e^{-\frac{\lambda}{2 \sigma^{2}}\left|a_{j}\right|}
\end{gathered}
$$

Lasso Regression - Bayesian View

$$
\begin{gathered}
y=\sum_{j} a_{j} x_{j}+\epsilon \quad \epsilon \sim N\left(0, \sigma^{2}\right) \\
a_{j} \sim \operatorname{Laplace}\left(0, \frac{2 \sigma^{2}}{\lambda}\right) \\
p d f\left(a_{j}\right)=\frac{\lambda}{4 \sigma^{2}} e^{-\frac{\lambda}{2 \sigma^{2}}\left|a_{j}\right|}
\end{gathered}
$$

$$
\log \text { Posterior }(a \mid \text { Data, } \lambda, \sigma)=-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-a \cdot x_{i}\right)^{2}-\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)
$$

$$
+\log \left(\frac{\lambda}{4 \sigma^{2}}\right)-\frac{\lambda}{2 \sigma^{2}} \sum_{i=1}^{d}\left|a_{i}\right|
$$

Lasso vs. Ridge

Laplace vs. Normal priors (mean 0, variance 1)

An Equivalent Formulation

Lasso:

$$
\min _{a}\|y-X a\|_{2}
$$

s.t. $\quad \sum_{i}\left|a_{i}\right| \leq \lambda^{\prime}$

Ridge:

$$
\begin{array}{ll}
& \min _{a}\|y-X a\|_{2} \\
\text { s.t. } & \sum_{i} a_{i}^{2} \leq \lambda^{\prime}
\end{array}
$$

Claim: for every λ there is λ^{\prime} that produces the same solution \hat{a}

Breaking Linearity

$$
\begin{aligned}
& y_{i}=a_{0}+a_{1} x_{i}+a_{2} x_{i}^{2}+a_{3} e^{x_{i}}+\epsilon \\
& \epsilon \sim N\left(0, \sigma^{2}\right) \\
& X=\left(\begin{array}{cccc}
1 & x_{1} & x_{1}^{2} & e^{x_{1}} \\
\cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots \\
1 & x_{n} & x_{n}^{2} & e^{x_{n}}
\end{array}\right)
\end{aligned}
$$

This can be solved using the usual linear regression by plugging X

Regression for Classification

Input: X
\square Real valued, vectors over real.
\square Discrete values ($0,1,2, \ldots$)

- Other structures (e.g., strings, graphs, etc.)

Output: Y
\square Discrete (0 or 1)
We treat the probability $\operatorname{Pr}(\mathrm{Y} \mid \mathrm{X})$ as a linear function of X.

Problem: $\operatorname{Pr}(\mathrm{Y} \mid \mathrm{X})$ should be bounded in $[0,1]$.

Logistic Regression

Model: $\operatorname{Pr}(y=1 \mid x)=\frac{e^{a \cdot x}}{1+e^{a \cdot x}}$

Logistic Regression

Given training data, we can write down the likelihood:

$$
\begin{aligned}
L\left(a ;\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right) & =\prod_{i=1}^{n} \frac{e^{y_{i} a \cdot x_{i}}}{1+e^{a \cdot x_{i}}} \\
\log L\left(a ;\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right) & =a \cdot \sum_{i=1}^{\sum_{i=1}^{n} y_{i} x_{i}}-\underbrace{\sum_{i=1}^{n} \log \left(1+e^{a \cdot x_{i}}\right)}_{\text {linear }}
\end{aligned}
$$

There is a unique solution - can be found using gradient descent.

