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• Review of linear classifiers 

– Realizability == Linear separability  

– Revisiting perceptron  
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– Wide margin principle 
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– Slack variables 
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Binary Classification 

Given training data {x𝑖,𝑦𝑖}𝑖=1..𝑁 

with x𝑖 ∈ R
𝑑 and 𝑦𝑖 ∈ −1,1  

learn a classifier 𝑓x such that  

i.e., 𝑦𝑖𝑓x𝑖>0 for a correct classification 

𝑓x𝑖 
≥0 𝑦𝑖=+1
<0 𝑦𝑖=−1

 

Easy Hard? 



Linear separability 

linearly 
separable 

not 
linearly 

separable 



Linear classifiers 

A linear classifier has the form 

• in 2D the discriminant is a line 

• w is the normal to the line, and b the bias 

• w is known as the weight vector 

• Before we added x0=1 and used w0 instead of b 

𝑓x=wTx+𝑏 

𝑓x<0 𝑓x>0 

𝑓x=0 

X1 

X2 



Linear classifiers 

• in 3D the discriminant is a plane, and in nD it is a hyperplane על מישור 

𝑓x=0 𝑥2 

𝑥1 

𝑥3 

A linear classifier has the form 

𝑓x=wTx+𝑏 



Reminder: The Perceptron Classifier 

Given linearly separable data xi labelled into two categories yi= −1,1, 

find a way to vector w such that the discriminant function 

𝑓x𝑖=w
Tx𝑖+𝑏 

Separates the categories for i=1,…,N 

• How can we find this separating hyperplane? 

 

The Perceptron Algorithm (class 4) 

Write classifier as 𝑓x𝑖=w 
Tx 𝑖+𝜔0=w

Tx𝑖 

 where w= w ,𝜔0,x𝑖= x 𝑖,1 

• Initialize w = 0 

• Cycle though the data points xi,yi 

– if xi is misclassified then w←w+sign𝑓x𝑖 𝑥𝑖 

• Until all the data is correctly classified 



For example in 2D 

• Initialize w = 0 

• Cycle though the data points xi,yi 

– If xi is misclassified then w←w+ sign𝑓x𝑖 𝑥𝑖 

• Until all the data is correctly classified 

w←w−x𝑖 x𝑖 

After convergence w=  𝛼𝑖 x𝑖
𝑁
𝑖  

X1 

X2 

w 

X1 

X2 

before update after update 



Properties of the Perceptron Algorithm 

• Guaranteed convergence in the realizable case  

• convergence can be very slow  

• separating line close to training data 
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What is the best w? 

• maximum margin solution 

– most stable under perturbations of the inputs 

– more confident classification for all examples 



What is w? 

w𝑇x+𝑏=0 

w𝑇𝑥′+𝑏=0 

w𝑇𝑥′′+𝑏=0 

w𝑇(𝑥′−𝑥′′)=0 

w 

𝑥′ 
𝑥′′ 



What is b? 

w𝑇x+𝑏=0 

𝑏

w
 

w 



What is b? 

w𝑇x+𝑏=0 

𝑏

w
 

w 

min𝑥  

s.t. w𝑇x+𝑏=0  

𝑥 



What is b? 

w𝑇x+𝑏=0 

𝑏

w
 

w 

min𝑥2 

s.t. w𝑇x+𝑏=0  

𝑥 



What is b? 

w𝑇x+𝑏=0 

𝑏

w
 

w 

min(x𝑇x) 

s.t. w𝑇x+𝑏=0  

𝑥 



What is b? 

min(x𝑇x) 

s.t. w𝑇x+𝑏=0  

𝐿𝑥,𝜆=x𝑇x−𝜆(w𝑇x+𝑏)  

x = 
𝜆

2
𝑤 

w𝑇(
𝜆

2
𝑤)+𝑏=0  

𝜆

2
w𝑇𝑤+𝑏=0  

𝜆=
−2𝑏

w𝑇𝑤
 

x = 
𝜆

2
𝑤=

−𝑏

w𝑇𝑤
w 

𝑥 = 𝑥𝑇𝑥= (
−𝑏

w𝑇𝑤
w)T (

−𝑏

w𝑇𝑤
w)   =

𝑏

w𝑇𝑤
(w𝑇𝑤)=

𝑏

(w𝑇𝑤)
=

𝑏

𝑤
 

2x−𝜆𝑤=0  
Google: 

“The matrix 
cookbook” 



Scale is arbitrary 

w𝑇x+𝑏=0 

𝑏

w
 

Support Vector 

w 

(5w)𝑇x+(5𝑏)=0 
5𝑏

5w
 

(7.2w)𝑇x+(7.2𝑏)=0 7.2𝑏

7.2w
 

What about negative scale? 



Which points influence the line? 

The support vectors, the points that are closest to the decision boundary 

Support Vector 

Support Vector 



Fixing the scale 
Since we have freedom to choose the scale, we choose it such that 

support vectors have a value of 1 in the line equation 

min
𝑥∈𝑃𝑂𝑆

𝑤𝑇𝑥+𝑏𝑇=1 

Support Vector 

Support Vector 

max
𝑥∈𝑁𝐸𝐺

𝑤𝑇𝑥+𝑏𝑇=−1 



Fixing the scale 
Equivilently – all points have values ≥ 1  

min
𝑥
|𝑤𝑇𝑥+𝑏𝑇|=1 

Support Vector 

Support Vector 



Fixing the scale 
In this case, we will show next, the margin is inversely proportional to 𝑤   

2

w
 Margin =  

Support Vector 

Support Vector 



Computing the distance 

The distance between x𝑛 and the plane 𝑤𝑇𝑥+𝑏=0  
where 𝑤𝑇𝑥𝑛+𝑏=1 

As we’ve seen, take x′ and x′′ on the plane 

The vector w is  ̂to the plane: 

wTx′+𝑏=0 and  wTx′′ +𝑏=0 

wT x′ − x′′=0 Ý 

x′ 

x′′ 

𝐰 

x𝑛 

Let x𝑛 be the nearest data point to the plane (w,b). How far is it? 



and the distance is … 

Distance between x𝑛 and the plane 

distance = w T(x𝑛 −x ) w = 
w

w
 

Take any point x on the plane 

Projection of x𝑛 −x on w 

 
1

w
 wTx𝑛 − w

Tx=
1

w
 wT𝑥𝑛+𝑏 − w

T𝑥 −𝑏=
1

w
 

Distance =  

Ý 

x 

w  

x𝑛 



The vanilla SVM optimization problem 

Maximize 
1

w
 

min
𝑛=1,2,…,𝑁

wTx𝑛+𝑏=1 subject to  



The vanilla SVM optimization problem 

Maximize 
1

w
 

min
𝑛=1,2,…,𝑁

wTx𝑛+𝑏=1 subject to  

Notice: wT𝑥𝑛+𝑏=𝑦𝑛(w
T𝑥𝑛+𝑏) 

Maximize 
1

w
 

subject to 𝑦𝑛w
T𝑥𝑛+𝑏≥1 for 𝑛=1,2,…,𝑁 

Minimize 
1

2
wTw 

subject to 𝑦𝑛w
T𝑥𝑛+𝑏≥1 for 𝑛=1,2,…,𝑁 



Constrained optimization 

Minimize 
1

2
wTw 

subject to 𝑦𝑛𝑤
𝑇𝑥𝑛+𝑏≥1 for 𝑛=1,2,…,𝑁 

w∈R𝑑,𝑏∈R 

This is a quadratic optimization problem subject to linear constraints 

a.k.a Quadratic Programming 

 
x = quadprog(H,f,A,b) minimizes 1/2*x'*H*x + f'*x  
subject to the restrictions A*x ≤ b.  
A is a matrix of doubles, and b is a vector of doubles. 
 

What is x? What is H? What if f? 

 

H is positive semi-definite Č unique global solution 

http://www.mathworks.com/help/optim/ug/quadprog.html
http://www.mathworks.com/help/optim/ug/quadprog.html
http://www.mathworks.com/help/optim/ug/quadprog.html
http://www.mathworks.com/help/optim/ug/quadprog.html
http://www.mathworks.com/help/optim/ug/quadprog.html


Constrained optimization 

Minimize 
1

2
wTw 

subject to 𝑦𝑛𝑤
𝑇𝑥𝑛+𝑏≥1 for 𝑛=1,2,…,𝑁 

w∈R𝑑,𝑏∈R 

Lagrange? inequality constraints 



Lagrange formulation 

𝐿w,𝑏,∝ =
1

2
wTw− ∝𝑛 𝑦𝑛w

Tx𝑛+𝑏−1

𝑁

𝑛=1

 

Minimize w.r.t 𝐰 and 𝒃 and Maximize w.r.t each ∝𝒏≥0 

If for all n, 𝑦𝑛w
Tx𝑛+𝑏−1>0  

then max
∝
𝐿w,𝑏,∝  is obtained at ∝=0 and is simply 

1

2
wTw  

∝𝒏 plays the adversary: 

If for any n, 𝑦𝑛w
Tx𝑛+𝑏−1<0  

then ∝𝒏=∞  and max
𝛼
𝐿w,𝑏,∝  becomes ∞  



Lagrange formulation 

𝐿w,𝑏,∝ =
1

2
wTw− ∝𝑛 𝑦𝑛w

Tx𝑛+𝑏−1

𝑁

𝑛=1

 

Minimize w.r.t 𝐰 and 𝒃 and Maximize w.r.t each ∝𝒏≥0 

𝛻w𝐿=w− ∝𝑛𝑦𝑛x𝑛=0

𝑁

𝑛=1

 

 

𝜕𝐿

𝜕𝑏
=− ∝𝑛𝑦𝑛=0

𝑁

𝑛=1

 

 



Substituting… 

𝐿w,𝑏,∝ =
1

2
wTw− ∝𝑛 𝑦𝑛w

Tx𝑛+𝑏−1

𝑁

𝑛=1

 

w= ∝𝒏𝑦𝑛x𝑛

𝑁

𝑛=1

 

 

 ∝𝒏𝑦𝑛=0

𝑁

𝑛=1

 

 

and employing  

in the Lagrangian 

we get 𝐿∝ =−
1

2
  𝑦𝑛𝑦𝑚∝𝑛∝𝑚x𝑛

T𝑥𝑚

𝑁

𝑚=1

𝑁

𝑛=1

+ ∝𝑛

𝑁

𝑛=1

 

Maximize w.r.t to ∝ subject to ∝𝑛≥0 for 𝑛=1,…,𝑁 and  ∝𝑛𝑦𝑛=0
𝑁
𝑛=1  



The solution – quadratic programming 

min
∝

1

2
∝T

𝑦1𝑦1x1
Tx1 𝑦1𝑦2x1

Tx2 … 𝑦1𝑦𝑁x1
Tx𝑁

𝑦2𝑦1x2
Tx1 𝑦2𝑦2x2

Tx2 … 𝑦2𝑦𝑁x2
Tx𝑁

… … … …
𝑦𝑁𝑦1x𝑁

Tx1 𝑦𝑁𝑦2x𝑁
Tx2 … 𝑦𝑁𝑦𝑁x𝑁

Tx𝑁

∝+−1T ∝ 

𝑦T∝=0 

0        ≤        ∝        ≤        ∞ 

subject to 

quadratic coefficients 

linear 

linear constraint 

lower bounds upper bounds 

Minimize 
1

2
wTw 

subject to 𝑦𝑛𝑤
𝑇𝑥𝑛+𝑏≥1 

𝑛=1,2,…,𝑁 

w∈R𝑑,𝑏∈R 



QP hands us a 

Solution: ∝=∝1,…,∝𝑁 

w= ∝𝒏𝑦𝑛x𝑛

𝑵

𝒏=𝟏

 

 

Ý 

From the optimization:  

for 𝑛=1,…,𝑁 

∝𝒏 𝑦𝑛w
Txn+𝑏−1=0 

∝𝑛>0 Ý x𝑛 is a   support vector 

𝐿w,𝑏,∝ = 

1

2
wTw− ∝𝑛 𝑦𝑛w

Tx𝑛+𝑏−1

𝑁

𝑛=1

 

Intuition – remember we maximize 
w.r.t ∝ 

Ý 𝑦𝑛w
Txn+𝑏=1 

How do we get b? 



Support Vector Machine 

linearly separable data 

𝑓𝑥=  ∝𝑖𝑦𝑖x𝑖
Tx+𝑏

𝑖

 

w𝑇x+𝑏=0 

support vectors 

Support Vector 

Support Vector 

w 



Leave One Out (LOO) error bound 

How many LOO mistakes can we make in the worse case?  

w𝑇x+𝑏=0 

Support Vector 

Support Vector 

w 



Leave One Out (LOO) error bound 

How many LOO mistakes can we make in the worse case? 

#SV, i.e., the LOO error is bounded by #SV/N 

 

Can you see this from the geometry? 

 w𝑇x+𝑏=0 

Support Vector 

Support Vector 

w 



Leave One Out (LOO) error bound 

How many LOO mistakes can we make in the worse case? 

#SV, i.e., the LOO error is bounded by #SV/N 

 

Can you see this from the primal QP? 

 

Minimize 
1

2
wTw 

subject to 𝑦𝑛𝑤
𝑇𝑥𝑛+𝑏≥1 

𝑛=1,2,…,𝑁 

w∈R𝑑,𝑏∈R 



Leave One Out (LOO) error bound 

How many LOO mistakes can we make in the worse case? 

#SV, i.e., the LOO error is bounded by #SV/N 

 

Can you see this from the dual QP? 

 

min
∝

1

2
∝T

𝑦1𝑦1x1
Tx1 𝑦1𝑦2x1

Tx2 … 𝑦1𝑦𝑁x1
Tx𝑁

𝑦2𝑦1x2
Tx1 𝑦2𝑦2x2

Tx2 … 𝑦2𝑦𝑁x2
Tx𝑁

… … … …
𝑦𝑁𝑦1x𝑁

Tx1 𝑦𝑁𝑦2x𝑁
Tx2 … 𝑦𝑁𝑦𝑁x𝑁

Tx𝑁

∝+−1T ∝ 

𝑦T∝=0 0        ≤        ∝        ≤        ∞ subject to 



Linear separability again:  

What is the best w? 

• linearly separated but very narrow 

margin 

• possibly the large margin solution is 

better, even though one constraint is 

violated 

 

 

• trade off between the margin and the 

number of mistakes on the training 

data 

 



Introduce “slack” variables 

2

w
 Margin =  

ξ𝑖 ≥0 

ξ𝑖 > 
2
w

 
• For ξ=0 point is classified 

correctly with margin 

 

• For 0 <ξ≤ 
1

w
 point is 

between margin and correct 

side of hyperplane. This is a 

margin violation 

 

• for ξ > 
1

w
 point is 

misclassified 

Support Vector 

Support Vector 

ξ𝑖 > 
1
w

 

Misclassified 

point 

w 

ξ=0 

w𝑇x+𝑏=1 

w𝑇x+𝑏=0 

w𝑇x+𝑏=−1 ξ=0 



“Soft” margin solution 

The PRIMAL optimization problem becomes the following QP problem 

subject to  

• Every constraint can be satisfied if ξ𝑖 is sufficiently large 

• C is a regularization parameter: 

– small C allows constraints to be easily ignored → large margin 

– large C makes constraints hard to ignore → narrow margin 

– C = ∞ enforces all constraints: hard margin 

• There is still a unique minimum 

• Pain: we have now a parameter C 

• Pain2: adding apples and oranges 

min
wϵR𝑑,ξ𝑖>0

w 2 + 𝐶 ξ𝑖

𝑁

𝑖

 

𝑦𝑖w
Tx𝑖+𝑏≥1 −ξ𝑖 for 𝑖 = 1 …N  



The dual formulation 

min
∝

1

2
∝T

𝑦1𝑦1x1
Tx1 𝑦1𝑦2x1

Tx2 … 𝑦1𝑦𝑁x1
Tx𝑁

𝑦2𝑦1x2
Tx1 𝑦2𝑦2x2

Tx2 … 𝑦2𝑦𝑁x2
Tx𝑁

… … … …
𝑦𝑁𝑦1x𝑁

Tx1 𝑦𝑁𝑦2x𝑁
Tx2 … 𝑦𝑁𝑦𝑁x𝑁

Tx𝑁

∝+−1T ∝ 

𝑦T∝=0 

0        ≤        ∝        ≤        𝐶 

subject to 

quadratic coefficients 

linear 

linear constraint 

lower bounds upper bounds 



Another point of view for SVM 

SVM was formulated as a constrained optimization problem over w and 

positive ξ 

The constraint 𝑦𝑖w
Tx𝑖+𝑏≥1 −ξ𝑖 can be written as  

since ξ𝑖≥0 and since we want to “pay” as little as possible 

ξ𝑖= max(0,1 −𝑦𝑖𝑓x𝑖)  

𝑦𝑖𝑓x𝑖 ≥1 − ξ𝑖 

Substituting, we get the unconstrained optimization problem over w alone 

min
wϵR𝑑,ξ𝑖>0

w 2 + 𝐶 ξ𝑖

𝑁

𝑖

 subject to  𝑦𝑖w
Tx𝑖+𝑏≥1 −ξ𝑖 for 𝑖=1…𝑁  

min
wϵR𝑑

w 2 + 𝐶 max(0,1 −𝑦𝑖𝑓x𝑖)  

𝑁

𝑖

 

regularization loss function 



Loss function 

min
wϵR𝑑

w 2 + 𝐶 max(0,1 −𝑦𝑖𝑓x𝑖)  

𝑁

𝑖

 

loss function 

Support Vector 

Support Vector 

w 

Points are in two categories: 

1. 𝑦𝑖𝑓𝑥𝑖≥1 
Point is on or outside margin. 

No contribution to loss 

2. 𝑦𝑖𝑓𝑥𝑖 <1 
Point violates margin 

constraint. Contributes to 

loss. 

wTx+𝑏=0 



Hinge loss 

• SVM uses the hinge loss max(0,1 −𝑦𝑖𝑓x𝑖) 

• an approximation to the 0-1 loss 

𝑦𝑖𝑓x𝑖 
0 

1 

2 

3 

4 

5 

-3 -2 -1 0 1 2 3 4 

0-1 

hinge 



What about multi-class SVMs? 

• Unfortunately, there is no “definitive” multi-class SVM 

formulation 

• In practice, we have to obtain a multi-class SVM by 

combining multiple two-class SVMs  

• One vs. others 

– Traning: learn an SVM for each class vs. the others 

– Testing: apply each SVM to test example and assign to it the class 

of the SVM that returns the highest decision value 

• One vs. one 

– Training: learn an SVM for each pair of classes 

– Testing: each learned SVM “votes” for a class to assign to the test 

example 

 



SVM: Practical Advice 

• Avoid MATLAB’s implementation 

 

• Use 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 

• Or 

http://www.csie.ntu.edu.tw/~cjlin/liblinear/ 

when you know you want linear SVM 

 

• Play with C (?) 

 

• Avoid unbalanced classes (?) 


