Introduction to Machine Learning Eran Halperin, Yishay Mansour, Lior Wolf 2013-2014

Lecture 7: Kernels

Outline

- Following discussions from last class
 - How many support vectors are there anyhow?
 - Positive definite matrices
- Support Vector machine (SVM) classifier
 - The kernel trick
 - Which kernels to use
 - Contructing kernels
 - SVD and kernel SVD

Number of support vectors

linearly separable data*: $\#SV \le d+1 = VC$ -dim

* Could be much more in ``degenerate cases"

#SV=2 is sometimes enough

Positive (Semi) Definite (PD/PSD) Matrices

(1) The *n*×*n* matrix **A** is positive definite if and only if:

 $\boldsymbol{Y}^T \boldsymbol{A} \boldsymbol{Y} > 0, \quad \forall \boldsymbol{Y} \neq \boldsymbol{0}$

The *n×n* matrix **A** is positive semi-definite if and only if:

$Y^T A Y \ge 0, \quad \forall Y \ne \mathbf{0}$ (2) A is positive definite $\iff \exists P \text{ s.t. } A = P P^T, |P| \ne \mathbf{0}$

A is positive definite \Rightarrow it is symmetric

Eigenvalues of PD Matrices

Given the *n*×*n* matrix *A*, there are *n* eigenvalues λ and vectors *X≠0* where

$$AX = \lambda X$$

$$\begin{bmatrix} \boldsymbol{X}_1 & \boldsymbol{X}_2 & \cdots & \boldsymbol{X}_n \end{bmatrix}^T \boldsymbol{A} \begin{bmatrix} \boldsymbol{X}_1 & \boldsymbol{X}_2 & \cdots & \boldsymbol{X}_n \end{bmatrix} = \mathsf{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$$

- If $\lambda_i > 0 \ \forall i \in [1, n] \Leftrightarrow A$ is positive definite
- If $\lambda_i \geq 0 \ \, orall i \in [1,n] \Leftrightarrow oldsymbol{A}$ is positive semi-definite
 - \boldsymbol{A} is positive definite $\Rightarrow |\boldsymbol{A}| > 0$

Positive (Semi) Definite (PD/PSD) Matrices

The $n \times n$ matrix **A** is positive definite if and only if:

1.
$$Y^T A Y > 0$$
, $\forall Y \neq 0$
2. $\exists P$ s.t. $A = P P^T$, $|P| \neq 0$
3. $\lambda_i \ge 0 \quad \forall i \in [1, n]$

The dual formulation

The dual formulation

 $\begin{bmatrix} y_1 y_1 x_1^{\mathrm{T}} x_1 & y_1 y_2 x_1^{\mathrm{T}} x_2 & \dots & y_1 y_N x_1^{\mathrm{T}} x_N \\ y_2 y_1 x_2^{\mathrm{T}} x_1 & y_2 y_2 x_2^{\mathrm{T}} x_2 & \dots & y_2 y_N x_2^{\mathrm{T}} x_N \\ \dots & \dots & \dots & \dots & \dots \\ y_N y_1 x_N^{\mathrm{T}} x_1 & y_N y_2 x_N^{\mathrm{T}} x_2 & \dots & y_N y_N x_N^{\mathrm{T}} x_N \end{bmatrix} = [y_1 x_1, y_2 x_2, \dots, y_N x_N]^t [y_1 x_1, y_2 x_2, \dots, y_N x_N]$

Support Vector Machine

Slide credit: A. Zisserman

Nonlinear SVMs

• Datasets that are linearly separable work out great:

• But what if the dataset is just too hard?

• We can map it to a higher-dimensional space:

Another example (2D)

Slide credit: Jitendra Malik

Nonlinear SVMs

 General idea: the original input space can always be mapped to some higher-dimensional feature space where the training set is separable:

A potential problem

- If we map the input vectors into a very high-dimensional feature space, optimizing the SVM and even classification might become computationally intractable
 - The mathematics is the same
 - The vectors have a huge number of components
 - Taking the dot product of two vectors is very expensive
 - What would happen to the primal QP?

Minimize
$$\frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$

subject to $y_n(\mathbf{w}^{T} \phi(x_n) + \mathbf{b}) \ge 1$
 $n = 1, 2, ..., N$
 $\mathbf{w} \in \mathbb{R}^?, \mathbf{b} \in \mathbb{R}$

A potential problem

- If we map the input vectors into a very high-dimensional feature space, optimizing the SVM and even classification might become computationally intractable
 - The mathematics is the same
 - The vectors have a huge number of components
 - Taking the dot product of two vectors is very expensive
 - What would happen to the primal QP?
 - What would happen to the dual QP?

$$\min_{\alpha} \frac{1}{2} \propto^{T} \begin{bmatrix} y_{1}y_{1}\phi(x_{1})^{T}\phi(x_{1}) & y_{1}y_{2}\phi(x_{1})^{T}\phi(x_{2}) & \dots & y_{1}y_{N}\phi(x_{1})^{T}\phi(x_{N}) \\ y_{2}y_{1}\phi(x_{2})^{T}\phi(x_{1}) & y_{2}y_{2}\phi(x_{2})^{T}\phi(x_{2}) & \dots & y_{2}y_{N}\phi(x_{2})^{T}\phi(x_{N}) \\ \dots & \dots & \dots & \dots & \dots \\ y_{N}y_{1}\phi(x_{N})^{T}\phi(x_{1}) & y_{N}y_{2}\phi(x_{N})^{T}\phi(x_{2}) & \dots & y_{N}y_{N}\phi(x_{N})^{T}\phi(x_{N}) \end{bmatrix} \propto + (-1^{T}) \propto (-1^{T})^{T} \phi(x_{N})^{T} \phi(x_{N})^{T} \phi(x_{N}) = (-1^{T})^{T} \phi(x_{N})^{T} \phi(x_{N})^{T} \phi(x_{N})^{T} \phi(x_{N})^{T} \phi(x_{N})^{T} \phi(x_{N}) = (-1^{T})^{T} \phi(x_{N})^{T} \phi(x_{N})^{T} \phi(x_{N})^{T} \phi(x_{N})^{T} \phi(x_{N})^{T} \phi(x_{N})^{T} \phi(x_{N}) = (-1^{T})^{T} \phi(x_{N})^{T} \phi(x$$

A potential problem

- If we map the input vectors into a very high-dimensional feature space, optimizing the SVM and even classification might become computationally intractable
 - The mathematics is the same
 - The vectors have a huge number of components
 - Taking the dot product of two vectors is very expensive
 - What would happen to the primal QP?
 - What would happen to the dual QP?
 - And during classification?

$$f(\mathbf{x}) = \sum_{i} \mathbf{x}_{i} y_{i}(\phi(\mathbf{x}_{i})^{T}\mathbf{x}) + b$$

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + \mathbf{b}$$

Dual decision rule

Primal decision rule

Where is the ϕ "feature" space?

Dual optimization:

$$\min_{\alpha} \frac{1}{2} \propto^{T} \begin{bmatrix} y_{1}y_{1}\phi(x_{1})^{T}\phi(x_{1}) & y_{1}y_{2}\phi(x_{1})^{T}\phi(x_{2}) & \dots & y_{1}y_{N}\phi(x_{1})^{T}\phi(x_{N}) \\ y_{2}y_{1}\phi(x_{2})^{T}\phi(x_{1}) & y_{2}y_{2}\phi(x_{2})^{T}\phi(x_{2}) & \dots & y_{2}y_{N}\phi(x_{2})^{T}\phi(x_{N}) \\ \dots & \dots & \dots & \dots & \dots \\ y_{N}y_{1}\phi(x_{N})^{T}\phi(x_{1}) & y_{N}y_{2}\phi(x_{N})^{T}\phi(x_{2}) & \dots & y_{N}y_{N}\phi(x_{N})^{T}\phi(x_{N}) \end{bmatrix} \propto + (-1^{T}) \propto \frac{1}{2} \sum_{n=1}^{N} \frac{1}{2} \sum_{n=1}^{$$

subject to $y^{\mathrm{T}} \propto = 0$ $0 \leq \propto \leq C$

w?

$$w = \sum_{i \in SV} \propto_i y_i \phi(\mathbf{x}_i) \qquad f(x) = \sum_i \propto_i y_i (\phi(\mathbf{x}_i)^T \phi(\mathbf{x})) + b$$

b?

$$f(x) = \sum_{i} \propto_{i} y_{i}(\phi(\mathbf{x}_{i})^{T}\phi(\mathbf{x})) + b = \mathbf{y}$$

The "Kernel trick"

Linear SVM $f(x) = \sum_{i} \propto_{i} y_{i}(\mathbf{x}_{i}^{\mathrm{T}}\mathbf{x}) + b$

Non-linear SVM

$$f(x) = \sum_{i} \propto_{i} y_{i}(\phi(\mathbf{x}_{i})^{T}\phi(\mathbf{x})) + b$$

Define the "kernel function" K $K(x', x'') = \phi(x')^T \phi(x'')$

then

$$f(x) = \sum_{i} \propto_{i} y_{i} K(\mathbf{x}_{i}, \mathbf{x}) + b$$

Where is the ϕ "feature" space?

Dual optimization: $\underset{\alpha}{\text{min}} \frac{1}{2} \propto^{\text{T}} \begin{bmatrix}
y_1 y_1 \phi(x_1)^T \phi(x_1) & y_1 y_2 \phi(x_1)^T \phi(x_2) & \dots & y_1 y_N \phi(x_1)^T \phi(x_N) \\
y_2 y_1 \phi(x_2)^T \phi(x_1) & y_2 y_2 \phi(x_2)^T \phi(x_2) & \dots & y_2 y_N \phi(x_2)^T \phi(x_N) \\
\dots & \dots & \dots & \dots \\
y_N y_1 \phi(x_N)^T \phi(x_1) & y_N y_2 \phi(x_N)^T \phi(x_2) & \dots & y_N y_N \phi(x_N)^T \phi(x_N)
\end{bmatrix} \propto + (-1^{\text{T}}) \propto (-1$

w?

$$w = \sum_{i \in SV} \propto_i y_i \phi(\mathbf{x}_i) \qquad f(x) = \sum_i \propto_i y_i (\phi(\mathbf{x}_i)^T \phi(\mathbf{x})) + b$$

b?

$$f(x) = \sum_{i} \propto_{i} y_{i} (\phi(x_{i})^{T} \phi(x)) + b = y$$

Nonlinear kernel: Example

• Consider the mapping $\varphi(x) = (x, x^2)$

$$\varphi(x) \cdot \varphi(y) = (x, x^2) \cdot (y, y^2) = xy + x^2 y^2$$
$$K(x, y) = xy + x^2 y^2$$

Computing K(x,x') without explicitly computing $\phi(x)$

For example: 2nd order polynomial kernel in 2d

$$K(x, x') = (1 + x^{t}x')^{2} = (1 + x_{1}x'_{1} + x_{2}x'_{2})^{2} =$$

= 1 + x_{1}^{2}x'_{1}^{2} + x_{2}^{2}x'_{2}^{2} + 2x_{1}x'_{1} + 2x_{2}x'_{2} + 2x_{1}x'_{1}x_{2}x'_{2}

$$K(\mathbf{x}, \mathbf{x}') = \begin{bmatrix} 1 \\ x_1^2 \\ x_2^2 \\ \sqrt{2}x_1 \\ \sqrt{2}x_2 \\ \sqrt{2}x_1x_2 \end{bmatrix}^T \begin{bmatrix} 1 \\ x_1'^2 \\ x_2'^2 \\ \sqrt{2}x_1' \\ \sqrt{2}x_2' \\ \sqrt{2}x_1' \\ \sqrt{2}x_1' \\ \sqrt{2}x_1' \\ x_2' \end{bmatrix} = \phi(x)^T \phi(x)$$

Popular kernels

 $K(x', x'') = \phi(x')^T \phi(x'')$

Name	params	Kernel eqation K(x',x'')	Non-linear mapping $oldsymbol{\phi}(x)$
Linear		(x') ^t x''	x
Polinomial	D	(1+(x') ^t x'') ^D	All polynomials up to degree D in the elements of the vector x
Gaussian==RBF	σ	$\exp(- x'-x'' ^2/(2\sigma^2))$	Infinite dimensional vector

Popular kernels

 $K(x', x'') = \phi(x')^T \phi(x'')$

Name	params	Kernel eqation K(x',x'')	Non-linear mapping $oldsymbol{\phi}(x)$
Linear		(x') ^t x''	x
Polinomial	D	(1+(x') ^t x'') ^D	All polynomials up to degree D in the elements of the vector x
Gaussian==RBF	σ	$\exp(- x'-x'' ^2/(2\sigma^2))$	Infinite dimensional vector

$$K(x,y) = \left(\sum_{i=1}^{n} x_i y_i + 1\right)^2 = \sum_{i=1}^{n} x_i^2 y_i^2 + \sum_{i=2}^{n} \sum_{j=1}^{i-1} \sqrt{2} x_i y_i \sqrt{2} x_j y_j + \sum_{i=1}^{n} \sqrt{2} x_i \sqrt{2} y_i + 1$$

$$\varphi(x) = \langle x_n^2, \dots, x_1^2, \sqrt{2}x_n x_{n-1}, \dots, \sqrt{2}x_n x_1, \sqrt{2}x_{n-1} x_{n-2}, \dots, \sqrt{2}x_{n-1} x_1, \dots, \sqrt{2}x_2 x_1, \sqrt{2}x_n, \dots, \sqrt{1}x_1, 1 \rangle$$

Complexity does not depend on D! (take log multiply and exponent)

Popular kernels

 $K(x',x'') = \phi(\mathbf{x}')^T \phi(\mathbf{x}'')$

Name	params	Kernel eqation K(x',x'')	Non-linear mapping $oldsymbol{\phi}(x)$
Linear		(x') ^t x''	x
Polinomial	D	(1+(x') ^t x'') ^D	All polynomials up to degree D in the elements of the vector x
Gaussian==RBF	σ	$\exp(- x'-x'' ^2/(2\sigma^2))$	Infinite dimensional vector

 $\overline{\overline{K}}_{ij} = K(x_i, x_j)$

 $\overline{\overline{K}} = [\phi(x_1) \phi(x_2) \dots \phi(x_N)]^{t} [\phi(x_1) \phi(x_2) \dots \phi(x_N)]$

 $rank(\overline{\overline{K}}) = rank([\phi(x_1) \phi(x_2) \dots \phi(x_N)])$

$$take \ \overline{\overline{K}} = \begin{bmatrix} 1 & \epsilon & \epsilon \\ \epsilon & 1 & \epsilon \\ \epsilon & \epsilon & \ddots \end{bmatrix}$$

Proper kernels

Symmetric

 $K(x_i, x_j) = K(x_j, x_i)$

- Positive definite kernel $\forall N, \forall x_1, \dots, x_N, \forall c \in \mathbb{R}^N, \qquad c^t \overline{\overline{K}} c > 0$
- But in practice, we don't necessarily need PSD kernels..

Constructing proper kernels

•
$$K_3(x',x'') = K_1(x',x'') + K_2(x',x'')$$

$$\phi_3(x) = \begin{bmatrix} \phi_1(x) \\ \phi_2(x) \end{bmatrix}$$

•
$$K_3(x',x'') = K_1(x',x'') * K_2(x',x'')$$

 $(\phi_1(x')^{\mathsf{t}} \phi_1(x''))(\phi_2(x'')^{\mathsf{t}} \phi_2(x')) = \mathsf{tr}(\phi_1(x')^{\mathsf{t}} \phi_1(x'')\phi_2(x'')^{\mathsf{t}} \phi_2(x')) =$

 $tr((\phi_2(x')\phi_1(x')^{t})(\phi_1(x'')\phi_2(x'')^{t})) = \langle \mathsf{VEC}(\phi_2(x')\phi_1(x')^{t}), \mathsf{VEC}(\phi_2(x'')\phi_1(x'')^{t}) \rangle = \langle \mathsf{VEC}(\phi_2(x')\phi_1(x')^{t}), \mathsf{VEC}(\phi_2(x'')\phi_1(x'')^{t}) \rangle$

Distances and kernels

• Suppose we want to apply kNN in kernel space

In input space:

$$||a - b||^2 = (a - b)^t (a - b) = a^t a - 2a^t b + b^t b$$

Similarly, in "feature space"
$$\begin{aligned} \left| \left| \phi(a) - \phi(b) \right| \right|^2 &= (\phi(a) - \phi(b))^t (\phi(a) - \phi(b)) = \\ &= \phi(a)^t \phi(a) - 2\phi(a)^t \phi(b) + \phi(b)^t \phi(b) = \\ &= \mathsf{K}(\mathsf{a},\mathsf{a}) - 2\mathsf{K}(\mathsf{a},\mathsf{b}) + \mathsf{K}(\mathsf{b},\mathsf{b}) \end{aligned}$$

Generalized Gaussian kernel for histograms:

$$K(h_1, h_2) = \exp\left(-\frac{1}{A}D(h_1, h_2)^2\right)$$

• L1 distance:
$$D(h_1, h_2) = \sum_{i=1}^{N} |h_1(i) - h_2(i)|$$

• L2 distance:
$$D^2(h_1, h_2) = \sum_{i=1}^{N} (h_1(i) - h_2(i))^2$$

• L-inf distance:
$$D(h_1, h_2) = \max_{1 \le i \le N} |h_1(i) - h_2(i)|$$

•
$$\chi^2$$
 distance: $D(h_1, h_2) = \sum_{i=1}^{N} \frac{(h_1(i) - h_2(i))^2}{h_1(i) + h_2(i)}$

• Hellinger distance:

$$D^{2}(h_{1},h_{2}) = \sum_{i=1}^{N} \left(\sqrt{h_{1}(i)} - \sqrt{h_{2}(i)}\right)^{2}$$

• Mahalanobis distance: $D^2(h_1, h_2) = (h_1 - h_2)^T S^{-1}(h_1 - h_2)$

The Intersection Kernel

Histogram Intersection kernel between histograms a, b

$$K(a,b) = \sum_{i=1}^{n} \min(a_i, b_i) \qquad \begin{array}{l} a_i \ge 0\\ b_i \ge 0 \end{array}$$

K small -> a, b are different K large -> a, b are similar

Intro. by Swain and Ballard 1991 to compare color histograms. Odone et al 2005 proved positive definiteness.

Demonstration of Positive Definiteness

Histogram Intersection kernel between histograms a, b

$$K(a,b) = \sum_{i=1}^{n} \min(a_i, b_i) \qquad \begin{array}{l} a_i \ge 0\\ b_i \ge 0 \end{array}$$

To see that $min(a_i, b_i)$ is positive definite,

represent *a*, *b* in "Unary", *n* is written as *n* ones in a row:

$$min(a_i, b_i) = \langle a_{i \text{unary}}, b_{i \text{unary}} \rangle$$
$$min(3, 5) = \langle (1, 1, 1, 0, 0), (1, 1, 1, 1, 1) \rangle = 3$$

The Trick

#support vectors x #dimensions

log(#support vectors) x #dimensions

Decision function is $\operatorname{sign}(h(x))$ where: $h(x) = \sum_{j=1}^{\# \operatorname{sv}} \alpha^j \left(\sum_{i=1}^{\# \operatorname{dim}} \min(x_i, x_i^j) \right) + b$ $= \sum_{i=1}^{\#\dim} \left(\sum_{i=1}^{\#\mathrm{sv}} \alpha^j \min(x_i, x_i^j) \right) + b$ #dim $= \sum h_i(x_i)$ pre-compute $h_i(x_i) = \sum_{j=1}^{\#^{\mathrm{sv}}} \alpha^j \min(x_i, x_i^j) + b$ $= \sum_{x_i^j < x_i} \alpha^j x_i^j + \left(\sum_{x_i^j \ge x_i} \alpha^j\right) x_i$

Just sort the support vector values in each coordinate, and

> To evaluate, find position of x_i in the sorted support vector values x_i^j (cost: log #sv) look up values, multiply & add

> > Slide credit: Jitendra Malik

Singular Value Decomposition (SVD)

- Handy mathematical technique that has application to many problems
- Given any m×n matrix A, it decomposes it to three matrices U, V, and W such that

 $\mathbf{A} = \mathbf{U} \, \mathbf{W} \, \mathbf{V}^{\mathsf{T}}$

- **U** is $m \times n$ and orthonormal
- **W** is $n \times n$ and diagonal
- **V** is $n \times n$ and orthonormal

SVD

Matlab: [U,W,V]=svd(A,0)

- The *w_i>0* are called the singular values of **A** and are sorted
- If **A** is singular, some of the w_i will be 0
- $rank(\mathbf{A}) = number of nonzero w_i$
- SVD is unique (unless some *w_i* are equal)

SVD and Inverses

• $A^{-1} = (V^T)^{-1} W^{-1} U^{-1} = V W^{-1} U^T$

- Using fact that inverse = transpose for orthogonal matrices
- Note: W^{-1} is also diagonal with elements one over those of W
- Pseudoinverse: if $w_i=0$, set $1/w_i$ to 0 (!)
 - Defined for all (even non-square, singular, etc.) matrices
 - Equal to $(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}$ if $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ invertible
- Solving Ax=b by least squares x=pinv(A)*b

SVD and Eigenvectors

- Let $A=UWV^T$, and let x_i be i^{th} column of V
- Consider $\mathbf{A}^{\mathsf{T}}\mathbf{A}x_{i}$:

$$\mathbf{A}^{\mathrm{T}}\mathbf{A}x_{i} = \mathbf{V}\mathbf{W}^{\mathrm{T}}\mathbf{U}^{\mathrm{T}}\mathbf{U}\mathbf{W}\mathbf{V}^{\mathrm{T}}x_{i} = \mathbf{V}\mathbf{W}^{2}\mathbf{V}^{\mathrm{T}}x_{i} = \mathbf{V}\mathbf{W}^{2}\begin{pmatrix}0\\\vdots\\1\\\vdots\\0\end{pmatrix} = \mathbf{V}\begin{pmatrix}0\\\vdots\\w_{i}^{2}\\\vdots\\0\end{pmatrix} = w_{i}^{2}x_{i}$$

- So elements of W are sqrt(eigenvalues) and columns of V are eigenvectors of A^TA
- Similarly, the columns of U are the eigenvectors of AA^T, and diag(W) are sqrt(eigenvalues AA^T)

Kernel SVD

Let A=[$\phi(x_1), \phi(x_2), ..., \phi(x_N)$] How do we compute the SVD decomposition U,W, V^T?

Mental framework – A is of size $\infty \times N$

AA^t is of size $\infty \times \infty$ and U is also $\infty \times N$

but A^tA is of size $N \times N$ and we can compute V and W $A = UWV^t \rightarrow U = AVW^{-1}$

and we can compute, e.g., $U^t \phi(x) = W^{-1} V^t A^t \phi(x)$ = $W^{-1} V^t \begin{bmatrix} k(x_1, x) \\ k(x_2, x) \\ \vdots \end{bmatrix}$ Applications: (1) $\mathbf{A}^{-1} = \mathbf{V} \mathbf{W}^{-1} \mathbf{U}^{\mathsf{T}}$ (2) kernel PCA

True label vs. classifier result

classifier Real label	Prediction=-1	Prediction=1
No disease (D = -1)		X
	True negative	False positive
Disease (D = +1)	X	\odot
	Miss	True positive

Specific Example

Test Result $f(x) = \mathbf{w}^{t}x + \mathbf{b}$

Threshold

Test Result

Some definitions ...

Test Result

without the disease with the disease

without the disease with the disease

Test Result

without the disease with the disease

Test Result

without the disease with the disease

Moving the Threshold: right

without the disease with the disease

Moving the Threshold: left Test Result

without the disease with the disease

ROC curve

ROC curve comparison

ROC curve extremes

Worst Classifier:

The distributions don't overlap at all

The distributions overlap completely