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• Following discussions from last class 

– How many support vectors are there anyhow? 

– Positive definite matrices 

• Support Vector machine (SVM) classifier 

– The kernel trick 

– Which kernels to use 

– Contructing kernels 

– SVD and kernel SVD 

Outline 



Number of support vectors 

linearly separable data*:  #SV ≤ d+1 = VC-dim 

w𝑇x + 𝑏 = 0 

Support Vector 

Support Vector 

Minimize 
1

2
wTw 

subject to 𝑦𝑛 𝑤
𝑇𝑥𝑛 + 𝑏 ≥ 1 

𝑛 = 1,2, … , 𝑁 

w ∈ R𝑑, 𝑏 ∈ R 
* Could be much more in ``degenerate cases’’ 



#SV=2 is sometimes enough 

w𝑇x + 𝑏 = 0 



(1) The n×n matrix A is positive definite if and only if:  

5 

Positive (Semi) Definite (PD/PSD) Matrices 

 The n×n matrix A is positive semi-definite if and only if:  

•   
semi 

(2) 

it is symmetric 



• Given the n×n matrix A, there are n eigenvalues λ and 

vectors X≠0 where 
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Eigenvalues of PD Matrices 

   

   



The n×n matrix A is positive definite if and only if:  
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Positive (Semi) Definite (PD/PSD) Matrices 

  2. 

3. 

1. 



The dual formulation 

min
∝

1

2
∝T

𝑦1𝑦1x1
Tx1 𝑦1𝑦2x1

Tx2 … 𝑦1𝑦𝑁x1
Tx𝑁

𝑦2𝑦1x2
Tx1 𝑦2𝑦2x2

Tx2 … 𝑦2𝑦𝑁x2
Tx𝑁

… … … …
𝑦𝑁𝑦1x𝑁

Tx1 𝑦𝑁𝑦2x𝑁
Tx2 … 𝑦𝑁𝑦𝑁x𝑁

Tx𝑁

∝ + −1T ∝ 

𝑦T ∝= 0 

0        ≤        ∝        ≤         𝐶 

subject to 

M 

linear 

linear constraint 

lower bounds upper bounds 



The dual formulation 

min
∝

1

2
∝T

𝑦1𝑦1x1
Tx1 𝑦1𝑦2x1

Tx2 … 𝑦1𝑦𝑁x1
Tx𝑁

𝑦2𝑦1x2
Tx1 𝑦2𝑦2x2

Tx2 … 𝑦2𝑦𝑁x2
Tx𝑁

… … … …
𝑦𝑁𝑦1x𝑁

Tx1 𝑦𝑁𝑦2x𝑁
Tx2 … 𝑦𝑁𝑦𝑁x𝑁

Tx𝑁

∝ + −1T ∝ 

M=AtA 

linear 

𝑦1𝑦1x1
Tx1 𝑦1𝑦2x1

Tx2 … 𝑦1𝑦𝑁x1
Tx𝑁

𝑦2𝑦1x2
Tx1 𝑦2𝑦2x2

Tx2 … 𝑦2𝑦𝑁x2
Tx𝑁

… … … …
𝑦𝑁𝑦1x𝑁

Tx1 𝑦𝑁𝑦2x𝑁
Tx2 … 𝑦𝑁𝑦𝑁x𝑁

Tx𝑁

= 𝑦1x1, 𝑦2 x2, … , 𝑦𝑁 x𝑁
𝑡 𝑦1x1, 𝑦2 x2, … , 𝑦𝑁 x𝑁  



Support Vector Machine 

𝑓 𝑥 =   ∝𝑖 𝑦𝑖 x𝑖
Tx + 𝑏

𝑖

 

w𝑇x + 𝑏 = 0 

support vectors 

Support Vector 

Support Vector 

w 

Slide credit: A. Zisserman 



• Datasets that are linearly separable work out great: 
 

 
 
 

 
 

 

• But what if the dataset is just too hard?  
 

 

• We can map it to a higher-dimensional space: 

0 x 

0 x 

0 x 

x2 

Nonlinear SVMs 

Slide credit: Andrew Moore 



Another example (2D) 

Slide credit: Jitendra Malik 



Φ:  x → φ(x) 

Nonlinear SVMs 
• General idea: the original input space can always be 

mapped to some higher-dimensional feature space 

where the training set is separable: 

 

Slide credit: Andrew Moore 



A potential problem 

• If we map the input vectors into a very high-dimensional 
feature space, optimizing the SVM and even classification 
might become computationally intractable 

– The mathematics is the same 

– The vectors have a huge number of components 

– Taking the dot product of two vectors is very expensive 

– What would happen to the primal QP? 

Minimize 
1

2
wTw 

subject to 𝑦𝑛 𝑤
𝑇𝜙(𝑥𝑛) + 𝑏 ≥ 1 

𝑛 = 1,2, … , 𝑁 

w ∈ R?, 𝑏 ∈ R 



A potential problem 

• If we map the input vectors into a very high-dimensional 
feature space, optimizing the SVM and even classification 
might become computationally intractable 

– The mathematics is the same 

– The vectors have a huge number of components 

– Taking the dot product of two vectors is very expensive 

– What would happen to the primal QP? 

– What would happen to the dual QP? 

min
∝

1

2
∝T

𝑦1𝑦1𝜙(x1)
𝑇𝜙(x1) 𝑦1𝑦2𝜙(x1)

𝑇𝜙(x2) … 𝑦1𝑦𝑁𝜙(x1)
𝑇𝜙(xN)

𝑦2𝑦1𝜙(x2)
𝑇𝜙(x1) 𝑦2𝑦2𝜙(x2)

𝑇𝜙(x2) … 𝑦2𝑦𝑁𝜙(x2)
𝑇𝜙(xN)

… … … …
𝑦𝑁𝑦1𝜙(xN)

𝑇𝜙(x1) 𝑦𝑁𝑦2𝜙(xN)
𝑇𝜙(x2) … 𝑦𝑁𝑦𝑁𝜙(x𝑁)

𝑇𝜙(xN)

∝ + −1T ∝ 



A potential problem 

𝑓 𝑥 =   ∝𝑖 𝑦𝑖 𝜙(x𝑖)
𝑇x + 𝑏

𝑖

 𝑓 x = w𝑇x + 𝑏 

• If we map the input vectors into a very high-dimensional 
feature space, optimizing the SVM and even classification 
might become computationally intractable 

– The mathematics is the same 

– The vectors have a huge number of components 

– Taking the dot product of two vectors is very expensive 

– What would happen to the primal QP? 

– What would happen to the dual QP? 

– And during classification? 

Dual decision rule Primal decision rule 



Where is the 𝜙 “feature” space? 

Dual optimization: 

w? 

b? 

min
∝

1

2
∝T

𝑦1𝑦1𝜙(x1)
𝑇𝜙(x1) 𝑦1𝑦2𝜙(x1)

𝑇𝜙(x2) … 𝑦1𝑦𝑁𝜙(x1)
𝑇𝜙(xN)

𝑦2𝑦1𝜙(x2)
𝑇𝜙(x1) 𝑦2𝑦2𝜙(x2)

𝑇𝜙(x2) … 𝑦2𝑦𝑁𝜙(x2)
𝑇𝜙(xN)

… … … …
𝑦𝑁𝑦1𝜙(xN)

𝑇𝜙(x1) 𝑦𝑁𝑦2𝜙(xN)
𝑇𝜙(x2) … 𝑦𝑁𝑦𝑁𝜙(x𝑁)

𝑇𝜙(xN)

∝ + −1T ∝ 

𝑦T ∝= 0 0        ≤        ∝        ≤         𝐶 subject to 

𝑤 =  ∝𝑖 𝑦𝑖𝜙(x𝑖) 

𝑖∈𝑆𝑉

 

𝑓 𝑥 =   ∝𝑖 𝑦𝑖 𝜙(x𝑖)
𝑇𝜙(x) + 𝑏𝑖 =y 

𝑓 𝑥 =   ∝𝑖 𝑦𝑖 𝜙(x𝑖)
𝑇𝜙(x) + 𝑏

𝑖

 



The “Kernel trick” 

𝑓 𝑥 =   ∝𝑖 𝑦𝑖 x𝑖
Tx + 𝑏

𝑖

 

𝑓 𝑥 =   ∝𝑖 𝑦𝑖 𝜙(x𝑖)
𝑇𝜙(x) + 𝑏

𝑖

 

𝑓 𝑥 =   ∝𝑖 𝑦𝑖𝐾(x𝑖,
𝑇 x) + 𝑏

𝑖

 

𝐾 𝑥′, 𝑥′′ = 𝜙 x′ 𝑇𝜙(x′′) 

Linear SVM 

Non-linear SVM 

Define the “kernel function” K 

then 



Where is the 𝜙 “feature” space? 

Dual optimization: 

w? 

b? 

min
∝

1

2
∝T

𝑦1𝑦1𝜙(x1)
𝑇𝜙(x1) 𝑦1𝑦2𝜙(x1)

𝑇𝜙(x2) … 𝑦1𝑦𝑁𝜙(x1)
𝑇𝜙(xN)

𝑦2𝑦1𝜙(x2)
𝑇𝜙(x1) 𝑦2𝑦2𝜙(x2)

𝑇𝜙(x2) … 𝑦2𝑦𝑁𝜙(x2)
𝑇𝜙(xN)

… … … …
𝑦𝑁𝑦1𝜙(xN)

𝑇𝜙(x1) 𝑦𝑁𝑦2𝜙(xN)
𝑇𝜙(x2) … 𝑦𝑁𝑦𝑁𝜙(x𝑁)

𝑇𝜙(xN)

∝ + −1T ∝ 

𝑦T ∝= 0 0        ≤        ∝        ≤         𝐶 subject to 

𝑤 =  ∝𝑖 𝑦𝑖𝜙(x𝑖) 

𝑖∈𝑆𝑉

 

𝑓 𝑥 =   ∝𝑖 𝑦𝑖 𝜙(x𝑖)
𝑇𝜙(x) + 𝑏𝑖 =y 

𝑓 𝑥 =   ∝𝑖 𝑦𝑖 𝜙(x𝑖)
𝑇𝜙(x) + 𝑏

𝑖

 

K 

K 

K 



Nonlinear kernel: Example 
• Consider the mapping  ),()( 2xxx 

22

2222
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x2 



Computing K(x,x’) without explicitly computing 𝜙(𝑥) 

𝐾 𝑥, 𝑥′ = 1 + 𝑥𝑡𝑥′ 2 = 1 + 𝑥1𝑥1
′ + 𝑥2𝑥2

′ 2 = 
   = 1 + 𝑥1

2𝑥1
′2 + 𝑥2

2𝑥2
′2 + 2𝑥1𝑥1

′ + 2𝑥2𝑥2
′ + 2𝑥1𝑥1

′𝑥2𝑥2
′  

 

For example: 2nd order polynomial kernel in 2d 

K x, x′ =  

1
𝑥1
2

𝑥2
2

2𝑥1

2𝑥2

2𝑥1𝑥2

T 1
𝑥′1
2

𝑥′2
2

2𝑥′1

2𝑥′2

2𝑥′1𝑥′2

= 𝜙 𝑥 𝑇𝜙(𝑥) 



Popular kernels 

Non-linear mapping 𝝓(𝒙) K(x’,x’’)  Kernel eqation params Name  

x (x’)tx’’ Linear 

All polynomials up to degree D 
in the elements of the vector x 

(1+(x’)tx’’)D D Polinomial 

Infinite dimensional vector exp(-||x’-x’’||2/(2𝜎2)) 𝜎 Gaussian==RBF 

𝐾 𝑥′, 𝑥′′ = 𝜙 x′ 𝑇𝜙(x′′) 



Popular kernels 

Non-linear mapping 𝝓(𝒙) K(x’,x’’)  Kernel eqation params Name  

x (x’)tx’’ Linear 

All polynomials up to degree D 
in the elements of the vector x 

(1+(x’)tx’’)D D Polinomial 

Infinite dimensional vector exp(-||x’-x’’||2/(2𝜎2)) 𝜎 Gaussian==RBF 

𝐾 𝑥′, 𝑥′′ = 𝜙 x′ 𝑇𝜙(x′′) 

Complexity does not depend on D! (take log multiply and exponent) 



Popular kernels 

Non-linear mapping 𝝓(𝒙) K(x’,x’’)  Kernel eqation params Name  

x (x’)tx’’ Linear 

All polynomials up to degree D 
in the elements of the vector x 

(1+(x’)tx’’)D D Polinomial 

Infinite dimensional vector exp(-||x’-x’’||2/(2𝜎2)) 𝜎 Gaussian==RBF 

𝐾 𝑥′, 𝑥′′ = 𝜙 x′ 𝑇𝜙(x′′) 

𝐾 𝑖𝑗 = 𝐾 𝑥𝑖 , 𝑥𝑗  

𝐾 = 𝜙 𝑥1  𝜙 𝑥2  … 𝜙(𝑥𝑁)
t 𝜙 𝑥1  𝜙 𝑥2  …𝜙(𝑥𝑁)  

𝑟𝑎𝑛𝑘(𝐾 ) = rank( 𝜙 𝑥1  𝜙 𝑥2  … 𝜙 𝑥𝑁 ) 

𝑡𝑎𝑘𝑒 𝐾 =  
1 𝜖 𝜖
𝜖 1 𝜖
𝜖 𝜖 ⋱

 



Proper kernels 

• Symmetric 

 

 

• Positive definite kernel 

 

 

• But in practice, we don’t necessarily need PSD kernels.. 

 

𝐾 𝑥𝑖 , 𝑥𝑗 =𝐾 𝑥𝑗 , 𝑥𝑖  

∀𝑁, ∀𝑥1, … , 𝑥𝑁, ∀𝑐 ∈ 𝑅
𝑁 ,     𝑐𝑡𝐾 𝑐 > 0 



Constructing proper kernels 

• K3(x’,x’’)  = K 1(x’,x’’) +K 2(x’,x’’)  

 

 

 

• K3(x’,x’’)  = K 1(x’,x’’)   * K 2(x’,x’’)  

 

𝜙3 𝑥 =
𝜙1 𝑥

𝜙2 𝑥
 

(𝜙1 𝑥′
t 𝜙1(𝑥

′′))(𝜙2 𝑥′′
t 𝜙2(𝑥

′)) = tr(𝜙1 𝑥′
t 𝜙1(𝑥

′′)𝜙2 𝑥
′′ t 𝜙2(𝑥′))= 

tr((𝜙2(𝑥′)𝜙1 𝑥
′ t)( 𝜙1(𝑥

′′)𝜙2 𝑥
′′ t)) =<VEC(𝜙2(𝑥′)𝜙1 𝑥

′ t), VEC(𝜙2(𝑥′′)𝜙1 𝑥
′′ t)> 



Distances and kernels 

𝑎 − 𝑏
2
= 𝑎 − 𝑏 𝑡 𝑎 − 𝑏 = 𝑎𝑡𝑎 − 2𝑎𝑡𝑏 + 𝑏𝑡𝑏 

• Suppose we want to apply kNN in kernel space 

 

In input space: 

 

 

 

Similarly, in “feature space” 

𝜙(𝑎) − 𝜙(𝑏)
2
= 𝜙(𝑎) − 𝜙(𝑏) 𝑡 𝜙(𝑎) − 𝜙(𝑏) =

= 𝜙 𝑎 𝑡𝜙(𝑎) − 2𝜙(𝑎)𝑡𝜙(𝑏) + 𝜙 𝑏 𝑡𝜙 𝑏 =  

           = K(a,a) -2K(a,b)+K(b,b) 



Generalized Gaussian kernel for histograms: 
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• L1 distance: 

 

• L2 distance:  

 

• L-inf distance:  

 

• χ2 distance: 

 

• Hellinger distance: 

 

• Mahalanobis distance:   
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The Intersection Kernel 

Histogram Intersection kernel  between histograms a, b 

K small -> a, b are different 
K large -> a, b are similar 

Intro. by Swain and Ballard 1991 to compare color histograms. 
Odone et al 2005 proved positive definiteness. 
 

Slide credit: Jitendra Malik 



Demonstration of Positive Definiteness 

Histogram Intersection kernel  between histograms a, b 

To see that                           is positive definite, 
 
represent a, b in “Unary”, n is written as n ones in a row:  

Slide credit: Jitendra Malik 



The Trick 

Decision function is                          where: 

Just sort the support vector 
values in each coordinate, and 
pre-compute  

To evaluate, find position of 
in the sorted support vector 
values        (cost: log #sv) 
look up values, multiply & add 

#support vectors x #dimensions 

log( #support vectors ) x #dimensions 

Slide credit: Jitendra Malik 



Singular Value Decomposition (SVD) 

• Handy mathematical technique that has application to 

many problems 

• Given any mn matrix A, it decomposes it to three 

matrices U, V, and W such that 

A = U W VT 

U is mn and orthonormal 

W is nn and diagonal 

V  is nn and orthonormal 



SVD 

Matlab: [U,W,V]=svd(A,0) 

T

1

00

00

00
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• The wi>0 are called the singular values of A and are sorted 

• If A is singular, some of the wi will be 0 

• rank(A) = number of nonzero wi 

• SVD is unique (unless some wi are equal) 



SVD and Inverses 

• A-1=(VT)-1
 W-1

 U-1 = V W-1
 UT 

– Using fact that inverse = transpose for orthogonal matrices 

– Note: W-1 is also diagonal with elements one over those of W 

• Pseudoinverse: if wi=0, set 1/wi to 0 (!) 

– Defined for all (even non-square, singular, etc.) matrices 

– Equal to (ATA)-1AT if ATA invertible 

• Solving Ax=b by least squares 

x=pinv(A)*b  



SVD and Eigenvectors 

• Let A=UWVT, and let xi be ith column of V 

• Consider ATAxi: 

 

 

 

 

 

 

• So elements of W are sqrt(eigenvalues) and columns 

of V are eigenvectors of ATA 

• Similarly, the columns of U are the eigenvectors of 

AAT, and diag(W) are sqrt(eigenvalues AAT) 

iiiiii xwwxxx
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Kernel SVD 

Let A= 𝜙 𝑥1 , 𝜙 𝑥2 , … , 𝜙 𝑥𝑁  

How do we compute the SVD decomposition U,W, VT? 

 

Mental framework – A is of size ∞ × 𝑁 

 

AAt is of size ∞×∞ and U is also ∞ × 𝑁 

but AtA is of size 𝑁 × 𝑁 and we can compute V and W 

𝐴 = 𝑈𝑊𝑉𝑡 → 𝑈 = 𝐴𝑉𝑊−1 

and we can compute, e.g., 𝑈𝑡𝜙 𝑥  = 𝑊−1𝑉𝑡𝐴𝑡𝜙 𝑥

= 𝑊−1𝑉𝑡
𝑘(𝑥1, 𝑥)

𝑘(𝑥2, 𝑥)
⋮

 Applications:  (1) A-1 = V W-1 UT 

                                      (2) kernel PCA 



True label vs. classifier result 

Prediction=-1  Prediction=1 

 No disease 

 (D = -1) 
         
True negative 

    X 
False positive 

 Disease  

 (D = +1) 
    X 
Miss 

        
 True positive 

Real label 
classifier 

Original slide credit: Darlene Goldstein   



Specific Example 

Test Result 

Pts with 
disease 

Pts without 
the disease 

Original slide credit: Darlene Goldstein   

𝑓 x = wtx + 𝑏 



Test Result 

Call these patients “negative” Call these patients “positive” 

Threshold 

Original slide credit: Darlene Goldstein   



Test Result 

Call these patients “negative” Call these patients “positive” 

without the disease 
with the disease 

True Positives 

Some definitions ... 

Original slide credit: Darlene Goldstein   



Test Result 

Call these patients “negative” Call these patients “positive” 

without the disease 
with the disease 

False 
Positives 

Original slide credit: Darlene Goldstein   



Test Result 

Call these patients “negative” Call these patients “positive” 

without the disease 
with the disease 

True 
negatives 

Original slide credit: Darlene Goldstein   



Test Result 

Call these patients “negative” Call these patients “positive” 

without the disease 
with the disease 

False 
negatives 

Original slide credit: Darlene Goldstein   



Test Result 

without the disease 
with the disease 

‘‘-’’ ‘‘+’’ 

Moving the Threshold: right 

Original slide credit: Darlene Goldstein   



Test Result 

without the disease 
with the disease 

‘‘-’’ ‘‘+’’ 

Moving the Threshold: left 

Original slide credit: Darlene Goldstein   
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100% 

False Positive Rate 
0% 100% 

ROC curve 

Original slide credit: Darlene Goldstein   
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0% 

100% 

False Positive Rate 
0% 100% 

A good classifier: A poor classifier: 

ROC curve comparison 



Best Classifier: Worst Classifier: 
Tr

u
e 

Po
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 R
at

e
 

0
% 

100% 

False Positive Rate 
0
% 

100
% 

Tr
u

e 
Po
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0
% 

100% 

False Positive 
Rate 

0
% 

100
% 

The distributions 
don’t overlap at all 

The distributions 
overlap completely 

ROC curve extremes 


