Introduction to Machine Learning

Eran Halperin, Yishay Mansour, Lior Wolf 2013-2014

Lecture 7: Kernels

Outline

- Following discussions from last class
- How many support vectors are there anyhow?
- Positive definite matrices
- Support Vector machine (SVM) classifier
- The kernel trick
- Which kernels to use
- Contructing kernels
- SVD and kernel SVD

Number of support vectors

linearly separable data*: \#SV $\leq \mathrm{d}+1=\mathrm{VC}$-dim

Minimize $\frac{1}{2} w^{T} W$
subject to $y_{n}\left(w^{T} x_{n}+b\right) \geq 1$

$$
n=1,2, \ldots, N
$$

$\mathrm{w} \in \mathrm{R}^{d}, b \in \mathrm{R}$

[^0]
\#SV=2 is sometimes enough

Positive (Semi) Definite (PD/PSD) Matrices

(1) The $n \times n$ matrix \boldsymbol{A} is positive definite if and only if:

$$
\boldsymbol{Y}^{T} \boldsymbol{A} \boldsymbol{Y}>0, \quad \forall \boldsymbol{Y} \neq \mathbf{0}
$$

- The $n \times n$ matrix \boldsymbol{A} is positive semi-definite if and only if:

$$
\boldsymbol{Y}^{T} \boldsymbol{A} \boldsymbol{Y} \geq 0, \quad \forall \boldsymbol{Y} \neq \mathbf{0}
$$

semi
(2) \boldsymbol{A} is positive definite $\Longleftrightarrow \exists \boldsymbol{P}$ s.t. $\boldsymbol{A}=\boldsymbol{P} \boldsymbol{P}^{T}, \mid \boldsymbol{P} \neq \mathbf{0}$
\boldsymbol{A} is positive definite \Rightarrow it is symmetric

Eigenvalues of PD Matrices

- Given the $n \times n$ matrix \boldsymbol{A}, there are n eigenvalues λ and vectors $\boldsymbol{X} \neq \mathbf{0}$ where

$$
\boldsymbol{A} \boldsymbol{X}=\lambda \boldsymbol{X}
$$

$\left[\begin{array}{llll}\boldsymbol{X}_{1} & \boldsymbol{X}_{2} & \cdots & \boldsymbol{X}_{n}\end{array}\right]^{T} \boldsymbol{A}\left[\begin{array}{llll}\boldsymbol{X}_{1} & \boldsymbol{X}_{2} & \cdots & \boldsymbol{X}_{n}\end{array}\right]=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$

- If $\lambda_{i}>0 \quad \forall i \in[1, n] \Leftrightarrow \boldsymbol{A}$ is positive definite
- If $\lambda_{i} \geq 0 \quad \forall i \in[1, n] \Leftrightarrow \boldsymbol{A}$ is positive semi-definite
\boldsymbol{A} is positive definite $\Rightarrow|\boldsymbol{A}|>0$

Positive (Semi) Definite (PD/PSD) Matrices

The $n \times n$ matrix \boldsymbol{A} is positive definite if and only if:

1. $\boldsymbol{Y}^{T} \boldsymbol{A} \boldsymbol{Y}>0, \quad \forall \boldsymbol{Y} \neq \mathbf{0}$
2. $\exists \boldsymbol{P}$ s.t. $\boldsymbol{A}=\boldsymbol{P} \boldsymbol{P}^{T},|\boldsymbol{P}| \neq \mathbf{0}$
3. $\lambda_{i} \geq 0 \quad \forall i \in[1, n]$

The dual formulation

subject to $\quad y^{\mathrm{T}} \propto=0$
linear constraint

The dual formulation

$$
\min _{\alpha} \frac{1}{2} \propto^{\mathrm{T}} \underbrace{\left[\begin{array}{cccc}
y_{1} y_{1} \mathrm{x}_{1}^{\mathrm{T}} \mathrm{x}_{1} & y_{1} y_{2} \mathrm{x}_{1}^{\mathrm{T}} \mathrm{x}_{2} & \ldots & y_{1} y_{N} \mathrm{x}_{1}^{\mathrm{T}} \mathrm{x}_{N} \\
y_{2} y_{1} \mathrm{x}_{2}^{\mathrm{T}} \mathrm{x}_{1} & y_{2} y_{2} \mathrm{x}_{2}^{T} \mathrm{x}_{2} & \ldots & y_{2} y_{N} \mathrm{x}_{2}^{T} \mathrm{x}_{N} \\
\ldots & \ldots & \ldots & \ldots \\
y_{N} y_{1} \mathrm{x}_{N}^{\mathrm{T}} \mathrm{x}_{1} & y_{N} y_{2} \mathrm{x}_{N}^{\mathrm{T}} \mathrm{x}_{2} & \ldots & y_{N} y_{N} \mathrm{x}_{N}^{\mathrm{T}} \mathrm{x}_{N}
\end{array}\right]}_{\mathrm{M}=\mathrm{A}^{\mathrm{T}} \mathrm{~A}} \propto+\underbrace{\left(-1^{\mathrm{T}}\right)}_{\text {linear }} \propto
$$

$$
\left[\begin{array}{cccc}
y_{1} y_{1} \mathrm{x}_{1}^{\mathrm{T}} \mathrm{x}_{1} & y_{1} y_{2} \mathrm{x}_{1}^{\mathrm{T}} \mathrm{x}_{2} & \ldots & y_{1} y_{N} \mathrm{x}_{1}^{\mathrm{T}} \mathrm{x}_{N} \\
y_{2} y_{1} \mathrm{x}_{2}^{\mathrm{T}} \mathrm{x}_{1} & y_{2} y_{2} \mathrm{x}_{2}^{\mathrm{T}} \mathrm{x}_{2} & \ldots & y_{2} y_{N} \mathrm{x}_{2}^{\mathrm{T}} \mathrm{x}_{N} \\
\ldots \ldots \\
y_{N} y_{1} \mathrm{x}_{N}^{\mathrm{T}} \mathrm{x}_{1} & y_{N} y_{2} \mathrm{x}_{N}^{\mathrm{T}} \mathrm{x}_{2} & \ldots & y_{N} y_{N} \mathrm{x}_{N}^{\mathrm{T}} \mathrm{x}_{N}
\end{array}\right]=\left[y_{1} \mathrm{x}_{1}, y_{2} \mathrm{x}_{2}, \ldots, y_{N} \mathrm{x}_{N}\right] \mathrm{t}\left[y_{1} \mathrm{x}_{1}, y_{2} \mathrm{x}_{2}, \ldots, y_{N} \mathrm{x}_{N}\right]
$$

Support Vector Machine

Nonlinear SVMs

- Datasets that are linearly separable work out great:

- But what if the dataset is just too hard?

- We can map it to a higher-dimensional space:

Another example (2D)

Nonlinear SVMs

- General idea: the original input space can always be mapped to some higher-dimensional feature space where the training set is separable:

Slide credit: Andrew Moore

A potential problem

- If we map the input vectors into a very high-dimensional feature space, optimizing the SVM and even classification might become computationally intractable
- The mathematics is the same
- The vectors have a huge number of components
- Taking the dot product of two vectors is very expensive
- What would happen to the primal QP?

$$
\begin{aligned}
& \text { Minimize } \frac{1}{2} \mathrm{w}^{\mathrm{T}} \mathrm{w} \\
& \text { subject to } y_{n}\left(w^{T} \phi\left(x_{n}\right)+b\right) \geq 1 \\
& \quad n=1,2, \ldots, N \\
& \mathrm{w} \in \mathrm{R}^{?}, b \in \mathrm{R}
\end{aligned}
$$

A potential problem

- If we map the input vectors into a very high-dimensional feature space, optimizing the SVM and even classification might become computationally intractable
- The mathematics is the same
- The vectors have a huge number of components
- Taking the dot product of two vectors is very expensive
- What would happen to the primal QP?
- What would happen to the dual QP?

$$
\min _{\propto} \frac{1}{2} \propto^{\mathrm{T}}\left[\begin{array}{cccc}
y_{1} y_{1} \phi\left(\mathrm{x}_{1}\right)^{T} \phi\left(\mathrm{x}_{1}\right) & y_{1} y_{2} \phi\left(\mathrm{x}_{1}\right)^{T} \phi\left(\mathrm{x}_{2}\right) & \ldots & y_{1} y_{N} \phi\left(\mathrm{x}_{1}\right)^{T} \phi\left(\mathrm{x}_{\mathrm{N}}\right) \\
y_{2} y_{1} \phi\left(\mathrm{x}_{2}\right)^{T} \phi\left(\mathrm{x}_{1}\right) & y_{2} y_{2} \phi\left(\mathrm{x}_{2}\right)^{T} \phi\left(\mathrm{x}_{2}\right) & \ldots & y_{2} y_{N} \phi\left(\mathrm{x}_{2}\right)^{T} \phi\left(\mathrm{x}_{\mathrm{N}}\right) \\
\ldots & \ldots & \ldots \\
y_{N} y_{1} \phi\left(\mathrm{x}_{\mathrm{N}}\right)^{T} \phi\left(\mathrm{x}_{1}\right) & y_{N} y_{2} \phi\left(\mathrm{x}_{\mathrm{N}}\right)^{T} \phi\left(\mathrm{x}_{2}\right) & \ldots & y_{N} y_{N} \phi\left(\mathrm{x}_{N}\right)^{T} \phi\left(\mathrm{x}_{\mathrm{N}}\right)
\end{array}\right] \propto+\left(-1^{\mathrm{T})} \propto\right.
$$

A potential problem

- If we map the input vectors into a very high-dimensional feature space, optimizing the SVM and even classification might become computationally intractable
- The mathematics is the same
- The vectors have a huge number of components
- Taking the dot product of two vectors is very expensive
- What would happen to the primal QP?
- What would happen to the dual QP?
- And during classification?

$$
\begin{array}{cc}
f(x)=\sum_{i} \alpha_{i} y_{i}\left(\phi\left(\mathrm{x}_{i}\right)^{T} \mathrm{x}\right)+b & f(\mathrm{x})=\mathrm{w}^{T} \mathrm{x}+b \\
\text { Dual decision rule } & \text { Primal decision rule }
\end{array}
$$

Where is the ϕ "feature" space?

Dual optimization:
$\min _{\propto} \frac{1}{2} \propto^{\mathrm{T}}\left[\begin{array}{cccc}y_{1} y_{1} \phi\left(\mathrm{x}_{1}\right)^{T} \phi\left(\mathrm{x}_{1}\right) & y_{1} y_{2} \phi\left(\mathrm{x}_{1}\right)^{T} \phi\left(\mathrm{x}_{2}\right) & \ldots & y_{1} y_{N} \phi\left(\mathrm{x}_{1}\right)^{T} \phi\left(\mathrm{x}_{\mathrm{N}}\right) \\ y_{2} y_{1} \phi\left(\mathrm{x}_{2}\right)^{T} \phi\left(\mathrm{x}_{1}\right) & y_{2} y_{2} \phi\left(\mathrm{x}_{2}\right)^{T} \phi\left(\mathrm{x}_{2}\right) & \ldots & y_{2} y_{N} \phi\left(\mathrm{x}_{2}\right)^{T} \phi\left(\mathrm{x}_{\mathrm{N}}\right) \\ \ldots & \ldots & \ldots & \ldots \\ y_{N} y_{1} \phi\left(\mathrm{x}_{\mathrm{N}}\right)^{T} \phi\left(\mathrm{x}_{1}\right) & y_{N} y_{2} \phi\left(\mathrm{x}_{\mathrm{N}}\right)^{T} \phi\left(\mathrm{x}_{2}\right) & \ldots & y_{N} y_{N} \phi\left(\mathrm{x}_{N}\right)^{T} \phi\left(\mathrm{x}_{\mathrm{N}}\right)\end{array}\right] \propto+\left(-1^{\mathrm{T}}\right) \propto$
subject to $y^{T} \propto=0 \quad 0 \quad \propto \leq C$
$w ?$
$w=\sum_{i \in S V} \propto_{i} y_{i} \phi\left(\mathrm{x}_{i}\right) \quad f(x)=\sum_{i} \propto_{i} y_{i}\left(\phi\left(\mathrm{x}_{i}\right)^{T} \phi(\mathrm{x})\right)+b$
b?

$$
f(x)=\sum_{i} \propto_{i} y_{i}\left(\phi\left(\mathrm{x}_{i}\right)^{T} \phi(\mathrm{x})\right)+b=\mathrm{y}
$$

The "Kernel trick"

Linear SVM

$$
f(x)=\sum_{i} \alpha_{i} y_{i}\left(\mathrm{x}_{i}^{\mathrm{T}} \mathrm{x}\right)+b
$$

Non-linear SVM

$$
f(x)=\sum_{i} \alpha_{i} y_{i}\left(\phi\left(\mathrm{x}_{i}\right)^{T} \phi(\mathrm{x})\right)+b
$$

Define the "kernel function" K

$$
K\left(x^{\prime}, x^{\prime \prime}\right)=\phi\left(\mathrm{x}^{\prime}\right)^{T} \phi\left(\mathrm{x}^{\prime \prime}\right)
$$

then

$$
f(x)=\sum_{i} \alpha_{i} y_{i} K\left(\mathrm{x}_{i},{ }^{T} \mathrm{x}\right)+b
$$

Where is the ϕ "feature" space?

Dual optimization:

$$
\min _{\propto} \frac{1}{2} \propto^{\mathrm{T}}\left[\begin{array}{cccc}
y_{1} y_{1} \phi\left(\mathrm{x}_{1}\right)^{T} \phi\left(\mathrm{x}_{1}\right) & y_{1} y_{2} \phi\left(\mathrm{x}_{1}\right)^{T} \phi\left(\mathrm{x}_{2}\right) & \ldots & y_{1} y_{N} \phi\left(\mathrm{x}_{1}\right)^{T} \phi\left(\mathrm{x}_{\mathrm{N}}\right) \\
y_{2} y_{1} \phi\left(\mathrm{x}_{2}\right)^{T} \phi\left(\mathrm{x}_{1}\right) & y_{2} y_{2} \phi\left(\mathrm{x}_{2}\right)^{T} \phi\left(\mathrm{x}_{2}\right) & \ldots & y_{2} y_{N} \phi\left(\mathrm{x}_{2}\right)^{T} \phi\left(\mathrm{x}_{\mathrm{N}}\right) \\
\ldots & \ldots & \ldots & \ldots \\
y_{N} y_{1} \phi\left(\mathrm{x}_{\mathrm{N}}\right)^{T} \phi\left(\mathrm{x}_{1}\right) & y_{N} y_{2} \phi\left(\mathrm{x}_{\mathrm{N}}\right)^{T} \phi\left(\mathrm{x}_{2}\right) & \ldots & y_{N} y_{N} \phi\left(\mathrm{x}_{N}\right)^{T} \phi\left(\mathrm{x}_{\mathrm{N}}\right)
\end{array}\right] \propto+\left(-1^{\mathrm{T})}\right) \propto
$$

$$
\text { subject to } y^{T} \propto=0 \quad 0 \quad \propto \leq C
$$

w?

$$
w=\sum_{i \in S V} \alpha_{i} y_{i} \phi\left(\mathrm{x}_{i}\right) \quad f(x)=\sum_{i} \propto_{i} y_{i}\left(\phi\left(\mathrm{x}_{i}\right)^{T} \phi(\mathrm{x})\right)^{-K}+b
$$

b?

$$
f(x)=\sum_{i} \alpha_{i} y_{i} \phi\left(\mathrm{x}_{i}\right)^{T} \phi(\mathrm{x})+b=\mathrm{y}
$$

Nonlinear kernel: Example

- Consider the mapping

$$
\varphi(x)=\left(x, x^{2}\right)
$$

$$
\begin{gathered}
\varphi(x) \cdot \varphi(y)=\left(x, x^{2}\right) \cdot\left(y, y^{2}\right)=x y+x^{2} y^{2} \\
K(x, y)=x y+x^{2} y^{2}
\end{gathered}
$$

Computing $\mathrm{K}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)$ without explicitly computing $\phi(x)$

For example: $2^{\text {nd }}$ order polynomial kernel in 2 d

$$
\begin{aligned}
K\left(x, x^{\prime}\right) & =\left(1+x^{t} x^{\prime}\right)^{2}=\left(1+x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}\right)^{2}= \\
& =1+x_{1}^{2} x_{1}^{\prime 2}+x_{2}^{2} x_{2}^{\prime 2}+2 x_{1} x_{1}^{\prime}+2 x_{2} x_{2}^{\prime}+2 x_{1} x_{1}^{\prime} x_{2} x_{2}^{\prime}
\end{aligned}
$$

$$
\mathrm{K}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)=\left[\begin{array}{c}
1 \\
x_{1}^{2} \\
x_{2}^{2} \\
\sqrt{2} x_{1} \\
\sqrt{2} x_{2} \\
\sqrt{2} x_{1} x_{2}
\end{array}\right]^{\mathrm{T}}\left[\begin{array}{c}
1 \\
x_{1}^{\prime 2} \\
x_{2}^{\prime 2} \\
\sqrt{2} x^{\prime}{ }_{1} \\
\sqrt{2} x^{\prime}{ }_{2} \\
\sqrt{2} x_{1}^{\prime} x^{\prime}{ }_{2}
\end{array}\right]=\phi(x)^{T} \phi(x)
$$

Popular kernels

$$
K\left(x^{\prime}, x^{\prime \prime}\right)=\phi\left(\mathrm{x}^{\prime}\right)^{T} \phi\left(\mathrm{x}^{\prime \prime}\right)
$$

Name	params	Kernel eqation $K\left(x^{\prime}, x^{\prime \prime}\right)$	Non-linear mapping $\phi(x)$
Linear		$\left(x^{\prime}\right)^{t} x^{\prime \prime}$	x
Polinomial	D	$\left(1+\left(x^{\prime}\right)^{t} x^{\prime \prime}\right)^{D}$	All polynomials up to degree D in the elements of the vector x
Gaussian==RBF	σ	$\exp \left(-\left\|\left\|x^{\prime}-x^{\prime \prime}\right\|\right\|^{2} /\left(2 \sigma^{2}\right)\right)$	Infinite dimensional vector

Popular kernels

$K\left(x^{\prime}, x^{\prime \prime}\right)=\phi\left(\mathrm{x}^{\prime}\right)^{T} \phi\left(\mathrm{x}^{\prime \prime}\right)$				
Name	params	Kernel eqation $\mathrm{K}\left(\mathrm{x}^{\prime} \mathrm{x}^{\prime \prime}\right)$	Non-linear mapping $\phi(x)$	
Linear		$\left(x^{\prime}\right)^{\prime} x^{\prime \prime}$	x	
Polinomial	D	$\left(1+\left(x^{\prime}\right)^{t} x^{\prime \prime}\right)^{\text {d }}$	All polynomials up to degree D in the elements of the vector x	
Gaussian==RBF	σ	$\exp \left(-\\|\left.\left\|x^{\prime}-x^{\prime \prime}\right\|\right\|^{2} /\left(2 \sigma^{2}\right)\right)$	Infinite dimensional vector	

$K(x, y)=\left(\sum_{i=1}^{n} x_{i} y_{i}+1\right)^{2}=\sum_{i=1}^{n} x_{i}^{2} y_{i}^{2}+\sum_{i=2}^{n} \sum_{j=1}^{i-1} \sqrt{2} x_{i} y_{i} \sqrt{2} x_{j} y_{j}+\sum_{i=1}^{n} \sqrt{2} x_{i} \sqrt{2} y_{i}+1$
$\varphi(x)=\left\langle x_{n}^{2}, \ldots, x_{1}^{2}, \sqrt{2} x_{n} x_{n-1}, \ldots, \sqrt{2} x_{n} x_{1}, \sqrt{2} x_{n-1} x_{n-2}, \ldots, \sqrt{2} x_{n-1} x_{1}, \ldots, \sqrt{2} x_{2} x_{1}, \sqrt{2} x_{n}, \ldots, \sqrt{1} x_{1}, 1\right\rangle$

Complexity does not depend on D! (take log multiply and exponent)

Popular kernels

$$
K\left(x^{\prime}, x^{\prime \prime}\right)=\phi\left(\mathrm{x}^{\prime}\right)^{T} \phi\left(\mathrm{x}^{\prime \prime}\right)
$$

Name	params	Kernel eqation $\mathrm{K}\left(\mathrm{x}^{\prime}, \mathrm{x}^{\prime \prime}\right)$	Non-linear mapping $\phi(x)$
Linear		$\left(x^{\prime}\right)^{t} x^{\prime \prime}$	x
Polinomial	D	$\left(1+\left(x^{\prime}\right)^{t} x^{\prime \prime}\right)^{\text {d }}$	All polynomials up to degree D in the elements of the vector x
Gaussian==RBF	σ	$\exp \left(-\left\|\left\|x^{\prime}-x^{\prime \prime}\right\|\right\|^{2} /\left(2 \sigma^{2}\right)\right)$	Infinite dimensional vector
$\overline{\bar{K}}_{i j}=K\left(x_{i}, x_{j}\right)$			
$\overline{\bar{K}}=\left[\phi\left(x_{1}\right) \phi\left(x_{2}\right) \ldots \phi\left(x_{N}\right)\right]^{\mathrm{t}}\left[\phi\left(x_{1}\right) \phi\left(x_{2}\right) \ldots \phi\left(x_{N}\right)\right]$			
$\operatorname{rank}(\overline{\bar{K}})=\operatorname{rank}\left(\left[\phi\left(x_{1}\right) \phi\left(x_{2}\right) \ldots \phi\left(x_{N}\right)\right]\right)$			
take $\overline{\bar{K}}=\left[\begin{array}{l}1 \\ \epsilon \\ \epsilon\end{array}\right.$	$\left.\begin{array}{cc}\epsilon & \epsilon \\ 1 & \epsilon \\ \epsilon & \ddots\end{array}\right]$		

Proper kernels

- Symmetric

$$
K\left(x_{i}, x_{j}\right)=K\left(x_{j}, x_{i}\right)
$$

- Positive definite kernel

$$
\forall N, \forall x_{1}, \ldots, x_{N}, \forall c \in R^{N}, \quad c^{t} \overline{\bar{K}} c>0
$$

- But in practice, we don't necessarily need PSD kernels..

Constructing proper kernels

- $\mathrm{K}_{3}\left(\mathrm{X}^{\prime}, \mathrm{x}^{\prime \prime}\right)=\mathrm{K}_{1}\left(\mathrm{X}^{\prime}, \mathrm{x}^{\prime \prime}\right)+\mathrm{K}_{2}\left(\mathrm{X}^{\prime}, \mathrm{x}^{\prime \prime}\right)$

$$
\phi_{3}(x)=\left[\begin{array}{l}
\phi_{1}(x) \\
\phi_{2}(x)
\end{array}\right]
$$

- $K_{3}\left(x^{\prime}, x^{\prime \prime}\right)=K_{1}\left(x^{\prime}, x^{\prime \prime}\right){ }^{*} K_{2}\left(x^{\prime}, x^{\prime \prime}\right)$
$\left(\phi_{1}\left(x^{\prime}\right)^{\mathrm{t}} \phi_{1}\left(x^{\prime \prime}\right)\right)\left(\phi_{2}\left(x^{\prime \prime}\right)^{\mathrm{t}} \phi_{2}\left(x^{\prime}\right)\right)=\operatorname{tr}\left(\phi_{1}\left(x^{\prime}\right)^{\mathrm{t}} \phi_{1}\left(x^{\prime \prime}\right) \phi_{2}\left(x^{\prime \prime}\right)^{\mathrm{t}} \phi_{2}\left(x^{\prime}\right)\right)=$
$\operatorname{tr}\left(\left(\phi_{2}\left(x^{\prime}\right) \phi_{1}\left(x^{\prime}\right)^{\mathrm{t}}\right)\left(\phi_{1}\left(x^{\prime \prime}\right) \phi_{2}\left(x^{\prime \prime}\right)^{\mathrm{t}}\right)\right)=<\operatorname{VEC}\left(\phi_{2}\left(x^{\prime}\right) \phi_{1}\left(x^{\prime}\right)^{\mathrm{t}}\right), \operatorname{VEC}\left(\phi_{2}\left(x^{\prime \prime}\right) \phi_{1}\left(x^{\prime \prime}\right)^{\mathrm{t}}\right)>$

Distances and kernels

- Suppose we want to apply kNN in kernel space

In input space:

$$
\|a-b\|^{2}=(a-b)^{t}(a-b)=a^{t} a-2 a^{t} b+b^{t} b
$$

Similarly, in "feature space"

$$
\begin{aligned}
\| \phi(a) & -\phi(b) \|^{2}=(\phi(a)-\phi(b))^{t}(\phi(a)-\phi(b))= \\
& =\phi(a)^{t} \phi(a)-2 \phi(a)^{t} \phi(b)+\phi(b)^{t} \phi(b)= \\
& =\mathrm{K}(\mathrm{a}, \mathrm{a})-2 \mathrm{~K}(\mathrm{a}, \mathrm{~b})+\mathrm{K}(\mathrm{~b}, \mathrm{~b})
\end{aligned}
$$

Generalized Gaussian kernel for histograms:
$K\left(h_{1}, h_{2}\right)=\exp \left(-\frac{1}{A} D\left(h_{1}, h_{2}\right)^{2}\right)$

- L1 distance: $\quad D\left(h_{1}, h_{2}\right)=\sum_{i=1}^{N}\left|h_{1}(i)-h_{2}(i)\right|$
- L2 distance: $\quad D^{2}\left(h_{1}, h_{2}\right)=\sum_{i=1}^{N}\left(h_{1}(i)-h_{2}(i)\right)^{2}$
- L-inf distance: $\quad D\left(h_{1}, h_{2}\right)=\max _{1 \leq i \leq N}\left|h_{1}(i)-h_{2}(i)\right|$
- χ^{2} distance: $D\left(h_{1}, h_{2}\right)=\sum_{i=1}^{N} \frac{\left(h_{1}(i)-h_{2}(i)\right)^{2}}{h_{1}(i)+h_{2}(i)}$
- Hellinger distance: $\quad D^{2}\left(h_{1}, h_{2}\right)=\sum_{i=1}^{N}\left(\sqrt{h_{1}(i)}-\sqrt{h_{2}(i)}\right)^{2}$
- Mahalanobis distance: $\quad D^{2}\left(h_{1}, h_{2}\right)=\left(h_{1}-h_{2}\right)^{T} S^{-1}\left(h_{1}-h_{2}\right)$

The Intersection Kernel

Histogram Intersection kernel between histograms a, b
$K(a, b)=\sum_{i=1}^{n} \min \left(a_{i}, b_{i}\right) \quad \begin{gathered}a_{i} \geq 0 \\ b_{i} \geq 0\end{gathered}$
K small $->a, b$ are different
K large $->a, b$ are similar

Intro. by Swain and Ballard 1991 to compare color histograms. Odone et al 2005 proved positive definiteness.

Demonstration of Positive Definiteness

Histogram Intersection kernel between histograms a, b

$$
K(a, b)=\sum_{i=1}^{n} \min \left(a_{i}, b_{i}\right) \quad \begin{aligned}
a_{i} \geq 0 \\
b_{i} \geq 0
\end{aligned}
$$

To see that $\min \left(a_{i}, b_{i}\right)$ is positive definite,
represent a, b in "Unary", n is written as n ones in a row:

$$
\min \left(a_{i}, b_{i}\right)=\left\langle a_{i_{\text {unary }}}, b_{i_{\text {unary }}}\right\rangle
$$

$\min (3,5)=\langle(1,1,1,0,0),(1,1,1,1,1)\rangle=3$

The Trick

$$
\begin{aligned}
& \text { Decision function is } \operatorname{sign}(h(x)) \text { where: } \\
& \begin{aligned}
h(x) & =\sum_{j=1}^{\# \mathrm{sv}} \alpha^{j}\left(\sum_{i=1}^{\# \operatorname{dim}} \min \left(x_{i}, x_{i}^{j}\right)\right)+b
\end{aligned} \\
& =\sum_{i=1}^{\# \operatorname{dim}}\left(\sum_{j=1}^{\# \mathrm{sv}} \alpha^{j} \min \left(x_{i}, x_{i}^{j}\right)\right)+b \\
& \\
& =\sum_{i=1}^{\# \operatorname{dim}} h_{i}\left(x_{i}\right) \\
& \begin{array}{l}
\text { Just sort the su } \\
\text { values in each o } \\
\text { pre-compute }
\end{array}
\end{aligned}
$$

Singular Value Decomposition (SVD)

- Handy mathematical technique that has application to many problems
- Given any $m \times n$ matrix \mathbf{A}, it decomposes it to three matrices \mathbf{U}, \mathbf{V}, and \mathbf{W} such that
$\mathbf{A}=\mathbf{U} \mathbf{W} \mathbf{V}^{\top}$
\mathbf{U} is $m \times n$ and orthonormal
\mathbf{W} is $n \times n$ and diagonal
\mathbf{V} is $n \times n$ and orthonormal

SVD

Matlab: $[\mathrm{U}, \mathrm{W}, \mathrm{V}]=\operatorname{svd}(\mathrm{A}, 0)$

- The $w_{i}>0$ are called the singular values of \mathbf{A} and are sorted
- If \mathbf{A} is singular, some of the w_{i} will be 0
- $\operatorname{rank}(\mathbf{A})=$ number of nonzero w_{i}
- SVD is unique (unless some w_{i} are equal)

SVD and Inverses

- $\mathbf{A}^{-1}=\left(\mathbf{V}^{\top}\right)^{-1} \mathbf{W}^{-1} \mathbf{U}^{-1}=\mathbf{V} \mathbf{W}^{-1} \mathbf{U}^{\top}$
- Using fact that inverse = transpose for orthogonal matrices
- Note: \mathbf{W}^{-1} is also diagonal with elements one over those of W
- Pseudoinverse: if $w_{i}=0$, set $1 / w_{i}$ to 0 (!)
- Defined for all (even non-square, singular, etc.) matrices
- Equal to $\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{A}^{\top}$ if $\mathbf{A}^{\top} \mathbf{A}$ invertible
- Solving $\mathbf{A x}=\mathbf{b}$ by least squares $\mathbf{x}=\operatorname{pinv}(\mathbf{A})^{*} \mathbf{b}$

SVD and Eigenvectors

- Let $\mathbf{A}=\mathbf{U W V}{ }^{\top}$, and let x_{i} be $i^{\text {th }}$ column of \mathbf{V}
- Consider $\mathbf{A}^{\top} \mathbf{A} x_{i}$:

- So elements of \mathbf{W} are sqrt(eigenvalues) and columns of \mathbf{V} are eigenvectors of $\mathbf{A}^{\top} \mathbf{A}$
- Similarly, the columns of U are the eigenvectors of $\mathbf{A A}^{\top}$, and diag(W) are sqrt(eigenvalues $\mathbf{A A}^{\top}$)

Kernel SVD

Let $\mathrm{A}=\left[\phi\left(x_{1}\right), \phi\left(x_{2}\right), \ldots, \phi\left(x_{N}\right)\right]$
How do we compute the SVD decomposition $\mathrm{U}, \mathrm{W}, \mathrm{V}^{\top}$?

Mental framework -A is of size $\infty \times N$
AA^{t} is of size $\infty \times \infty$ and U is also $\infty \times N$
but $\mathrm{A}^{\mathrm{t}} \mathrm{A}$ is of size $N \times N$ and we can compute V and W
$A=U W V^{t} \rightarrow U=A V W^{-1}$
and we can compute, e.g., $U^{t} \phi(x)=W^{-1} V^{t} A^{t} \phi(x)$
$=W^{-1} V^{t}\left[\begin{array}{c}k\left(x_{1}, x\right) \\ k\left(x_{2}, x\right) \\ \vdots\end{array}\right]$
Applications: (1) $\mathbf{A}^{-1}=\mathbf{V} \mathbf{W}^{-1} \mathbf{U}^{\top}$
(2) kernel PCA

True label vs. classifier result

classifier Real label	Prediction=-1	Prediction=1
No disease $(D=-1)$		False positive
Disease $(D=+1)$		True positive

Specific Example

Test Resul \dagger

$$
f(\mathrm{x})=\mathrm{w}^{\mathrm{t}} \mathrm{x}+b
$$

Threshold

Test Result

Some definitions ...

Test Result \dagger
without the disease with the disease

without the disease with the disease

Test Result
without the disease with the disease

Original slide credit: Darlene Goldstein

Test Result \dagger
without the disease with the disease

Original slide credit: Darlene Goldstein

Moving the Threshold: right

without the disease with the disease

Moving the Threshold: left

without the disease
with the disease

ROC curve

Original slide credit: Darlene Goldstein

ROC curve comparison

A good classifier:
A poor classifier:

ROC curve extremes

Best Classifier:

The distributions don't overlap at all

Worst Classifier:

The distributions overlap completely

[^0]: * Could be much more in "degenerate cases"

