
Introduction to Machine Learning Fall Semester, 2014

Lecture 1: October 26
Lecturer: Lior Wolf Scribe: Yishay Mansour

1.1 Introduction

The first question posed was what is computer science? And we concluded that it is about
what happens between the input and output of a program. In computer vision the input can
be a picture and the output could be an identification of the person in the picture.

The second question posed was what is Machine Learning? The initial input (the training
examples) guides the building of the machine. The goal is to act “correctly” on new unseen
examples. For an example from computer vision: The input (training examples) could be
the photos of the individual students in the class and the test could be a joint picture of the
class. The task could be an identification of the individual students in the picture.

The third question was: what are tasks in Machine learning. Some example topics:

1. Document or photo classification. The motivation can be a Google car that drives
and needs to distinguish between pedestrians, trucks and trees. The “regular” way
to implement this task would be as follows: Have a detector for each object (say,
pedestrian). The detector covers the photo with small windows, and for each window
it determines if there is a pedestrian in that window. For a window the task can be
learned from examples. There is an issue of how we represent the photo. It can be raw
pixel values or higher level attributes (say, lines).

2. Speech recognition can be either speaker recognition task or transcribing the speech
to words.

3. Language Translation a classical problem in NLP. Today, the successful automatic
tools use machine learning and are based on a lot of data. The input for translation
can be translated books, or transcription of committee meeting (in the EU or Canada).

4. Recommendation systems and Collaborative Filtering. The best example is
the Netflix challenge, where they offered $1M for a 10% increase in their prediction
accuracy. The input is a huge matrix, with users as rows and movies as columns, and
the value is the rating a user gave to a movie. Naturally the matrix is very sparse and
the goal is to predict the missing values.

5. Fraud detection

1

2 Lecture 1: October 26

6. Driving a car. This is a control system where the action depends on the input
receives from the environment. Such issues are studied in Reinforcement Learning.
The major difference is that the system has a state, and the action depends not only
on the observations but also on the state.

7. Spam Filter. One can generate examples from users’ actions (classifying certain e-
mails as SPAM or reading and replying) How do we learn such a task? We have the
raw e-mails, and we would like to build vectors from them. One natural way is called
a bag of words, where the vector has all the possible words in the language as entries,
and maintains the word counts. Note that two different e-mails might have the same
word counts.

The goal is to build a classification function f , that given a new email decides if it
is SPAM or not. More concretely, we have pairs (Ei, yi) where Ei is an e-mail and
yi = +1 if it is SPAM and yi = −1 if it is NOT SPAM. The input (training examples)
is {(Ei, yi)}ni=1. The output of the learning algorithm is a function f : E → {−1,+1}.
This is an example of a binary supervised classification problem.

In machine learning, when building a classifier, there is an inherent tradeoff between
accuracy and interpretability. The most accurate classifier is many times complex and hard
to interpret. In cases where human interpretability is important, like in medical applications,
it comes at the price of reduced accuracy.

1.2 Important challenges in machine learning

How important is the actual learning algorithm and its tuning. The answer depends on the
level of accuracy required. It is rare to find examples where one algorithm does fantastically
and all others fail miserably. However, in some tasks a fraction of a percentage difference
(like in predicting the probability of a click on an ad) can make a huge difference (billions of
dollars in revenue).

Simple versus complex algorithm. Simple algorithms sometimes win, since they run faster
and can, at the same amount of time, use much more training data. However, there is a new
trend of running complex algorithms (such as deep learning) on huge data sets. Sometimes
the combination of huge amounts of data with a complex algorithm (where the training can
take weeks) is the best we can do today.

An important philosophical question is whether the past really represent the future.
Russel example of a chicken is great to illustrate how the past cannot predict the future.
We would normally assume that the past and future examples are drawn from the same
distribution. Although it is rarely the case, it is a good approximation in most cases.

Over-fitting is the phenomena of fitting the classifier too much to the training data, at
the cost of lowering its prediction ability (the task we really like to do!).

1.3. EXAMPLES FOR SUPERVISED AND UNSUPERVISED LEARNING 3

Model Selection. One classical solution is Occam’s Razor, which says that if we have
multiple hypothesis which have the same accuracy, we should prefer the simpler one.

Regularization adds an explicit penalty to the hypothesis as a function of its complexity
(beyond its error rate) and thus favors simpler hypotheses.

As an example, consider points in the plane. We can try to fit them with a line (and
assume that the errors are noise). At the other extreme we can fit them perfectly with a
high degree polynomial and get zero training error (but very weak on generalization). The
model selection would say, take a polynomial of degree at most k. The regularization might
add a penalty that would depend on the norm of the coefficient (large coefficients can make
the function change very fast).

1.3 Examples for supervised and unsupervised learn-

ing

1.3.1 Nearest Neighbor

A very intuitive algorithm, that classifies a new point by the training example which is most
similar to it. The training examples are {(xi, yi)}ni=1. The nearest neighbor (NN) algorithm,
given a point z sorts the points according to their distance from z. Let the sorted points by
their distance from z be x[1], x[2], The prediction for z is the label of x[1], i.e., the label
of the closest point to z in the training set.

A simple variation on the NN is the k-NN algorithm. In this algorithm we take a majority
of the k nearest examples. Again, we sort the points by their distance from z. For examples,
3-NN we return majority(y[1], y[2], y[3]).

The training error of 1-NN is always zero (the nearest point is the point itself).
If the classification function is deterministic (each point has one true label) then with an

infinite sample we will converge to a correct classification. If the classification function is
stochastic (can be due to the fact that we map many inputs to the same xi) then the error
rate, with an infinite sample, would be 2R∗(1−R∗), where R∗ is the optimal error rate.

1.3.2 k-Means

This is unsupervised learning. The examples have no classification, and we like to partition
them to clusters. First note that the goal is not well-defined, and this is inherent in most of
the unsupervised algorithms.

In the k-means algorithm, we are given a set of examples xi and a parameter k and we
would like to partition them to k sets, and with each set we associate a “center” µi:

K-Means

4 Lecture 1: October 26

Initialize Set t = 0 and select k values µt
1, . . . , µ

t
k.

Assign Assign each xj to the closest out of µt−1
1 , . . . , µt−1

k . Formally, Ct
j = arg mini ‖xj−µt−1

i ‖2
and St

i = {xj|Ct
j = i}.

Update Given the sets St
1, . . . , S

t
k re-compute µ1, . . . , µk, by setting µt

i to the average in St
i , i.e.,

µt
i = (1/|St

i |)
∑

xj∈St
i
xj.

• While there are changes, return to Assign.

The goal is to minimize the objective function

k∑
i=1

∑
xj∈Si

‖xj − µi‖2

The minimization problem is NP-hard, and therefore unlikely to have an efficient algo-
rithm.

Initialize: Need to pick k values µi. One common solution is to pick k points xj at
random. Note that different initializations might give you different solutions.

In each iteration it is clear that the objective function cannot increase. There is a theo-
retical possibility that it will alternate without an actual decrease, but nearly impossible to
occur in practice. When the k-means changes configurations without reducing the cost, we
can clearly stop once we repeat a configuration.

The number of iterations of the k-means algorithm can be bounded by kn, since this is
the number of partitions. A better bound is nO(kd) which is computed from the geometry
of the problem, considering the number of Voronoi diagrams [1]. The lower bound can be
shown to be exponential even for the plane (d = 2) [2]. On the line (d = 1) there is a lower
bound of Ω(n), even for k = 2, and a polynomial upper bound [3].

Bibliography

[1] Inaba, M., Katoh, N., and Imai, H. Applications of weighted voronoi diagrams and ran-
domization to variance-based k-clustering. In Proc. 10th Annu. ACM Sympos. Comput.
Geom., pages 332–339, 1994.

[2] Andrea Vattani k-means Requires Exponentially Many Iterations Even in the Plane
Discrete & Computational Geometry 45(4): 596-616 (2011)

[3] Sariel Har-Peled and Bardia Sadri How Fast Is the k-Means Method? Algorithmica
41(3): 185-202 (2005)

5

