
Introduction to Machine Learning Fall Semester, 2013

Lecture 10: December 22
Lecturer: Eran Halperin Scribe: eh

10.1 Singular Value Decomposition

We will start this lecture with a description of the singular value decomposition of a matrix
X. Let X be an m × n matrix over the real numbers. We can decompose the X into the
product of three matrices, i.e., X = UΣV t, where U is an m×m orthonormal matrix, V is
an n× n orthonormal matrix, and Σ is a diagonal m× n matrix with non-negative numbers
on the diagonal, such that Σ11 ≥ Σ22 ≥ . . . ≥ Σnn in case n ≤ m. We denote λi = Σ2

ii.

X =

 | |
u1 . . . um
| |




√
λ1

. . . √
λn

0
. . .

0


 − v1 −

...
...

...
− vn −



The derivation of the decomposition was given in the slides for the case where m =
n. Here we give it in the case where m > n. Since the matrix XX t is symmetric and
positive semidefinite, all its eigenvalues are real and nonnegative. Based on the spectral
decomposition of XX t, we know that

XX t = U

λ1

. . .

λm

U t,

where U is an orthonormal matrix, with the columns corresponding to the eigenvectors of
XX t, and λ1 ≥ . . . ≥ λm corresponding to the eigenvalues of XX t. Note that since the rank
of XX t is at most n, we have λn+1 = . . . = λm = 0. Let k be the maximal index of a positive
eigenvalue, that is λk > λk+1 = 0. Define Uk as the m × k matrix consisting of the first k
columns of U (i.e., the first k eigenvectors of XX t, and Um−k be the m × (m − k) matrix
consisting of the last m − k columns of U . Also, define Σk to be the diagonal matrix with

1

2 Lecture 10: December 22

the square root of the k positive eigenvalues on the diagonal, i.e.,

Uk =

 | |
u1 . . . uk
| |

 , Σk =


√
λ1

. . . √
λk


We define Vk = X tUkΣ

−1
k , and let Vn−k be a matrix whose columns consist orthonormal

vectors that are orthogonal to the set of columns of Vk. We then define V = [VkVn−k]
(concatenating the two matrices). Clearly, V is an n× n orthonormal matrix by definition.

Moreover, we define Σ =

(
Σk 0
0 0

)
, so that Σ is of size m × n. We note that since XX t =

UΣ2U t, we have that Σ2 = U tXX tU , and therefore 0 = U t
m−kXX

tUm−k = ‖U t
m−kX‖2. Thus,

U t
m−kX = 0. Noting that UkU

t
k + Um−kU

t
m−k = Im, we get:

UΣV t = UkΣkV
t
k = UkU

t
kX = (I − Um−kU t

m−k)X = X

Note that the transposed matrix has the same eigenvectors, since X tXvi = V Σ2V tvi =
λivi.

10.2 SVD and linear regression

Before we turn to the main theme of the lecture, let us consider an important application of
SVD. Recall that in linear regression we were interested in solving the following problem:

â = mina‖y −Xa‖2
2

The solution to this problem is obtained by the Normal Equations as â = (X tX)−1X ty. If
X tX is singular, there are many possible solutions. One sensible criterion that chooses one
among all possible solution, is a solution of the Normal Equations with a minimal L2 norm.
That is, we search for a that optimizes the following (note that unless otherwise stated, we
the norm is the L2 norm):

min ‖a‖
s.t. X tXa = X ty

If we use the SVD decomposition X = UΣV t, we get that the constraint is V Σ2V t = V ΣU ty.
We can multiply by V t both sides, and we get Σ2V ta = ΣU ty.

Now, let us express a as a linear combination of the eigenvectors. This can always be
done since the eigenvectors form an orthonormal basis in Rn. Thus, we write a =

∑n
i=1 αivi.

10.3. UNSUPSERVISED LEARNING IN HIGH DIMENSION 3

Since the eigenvectors are orthonormal, we have ‖a‖2 =
∑n

i=1 α
2
i , so we are interested in

minimizing the sum
∑

i α
2
i . Now, atV = (α1, . . . , αn), and therefore

Σ2V ta =


α1λ1

α2λ2

. . .

. . .
αnλn

 .

Now, we plug in the constraint Σ2V ta = ΣU ty and we get that αiλi =
√
λiu

t
iy. Now, if

λi > 0 we get that αi =
utiy√
λi

, and otherwise αi is a free variable (its value does not affect the

constraint). Therefore, it is best to choose αi = 0 if we want to minimize
∑n

i=1 α
2
i . Therefore,

we get:

a =
∑
i;λi>0

1√
λi
utiyvi = V Σ−1U ty.

Note that in the above formulation, we denote by Σ−1 the n ×m diagonal matrix with
Σ−1
ii = 1

Σii
if Σii > 0, and Σ−1

ii = 0 otherwise. The matrix V Σ−1U t is called the pseudo-inverse

of X t.
Note that the solution for Ridge regression with regularization parameter ε is âRidge,ε =

(X tX + εI)−1X ty. By plugging in the SVD, we get that âRidge,ε = V t(ΣtΣ + εI)−1ΣtU ty.
Now,

(ΣtΣ + εI)−1Σt =



√
λ1

ε+λ1
. . .

√
λn

ε+λn

0
. . .

0


ε→0−−→ Σ−1

10.3 Unsupservised learning in high dimension

During most of the course, we discussed the supervised learning scenario, in which we get a
training data in the form of pairs (xi, yi), where xi is a vector of features and yi is a label
(and we saw in the last lecture that by label we may mean a real number). We then get test
samples, in which we only obtain the features xi and we need to estimate the value of yi.

We will now turn to the unsupervised scenario. In the unsupervised scenario we get a
set of test features x1, . . . , xm, and we need to assign labels to the samples. Clearly this

4 Lecture 10: December 22

is a harder problem, and often there is not enough information in order to say something
meaningful. But in many cases it is possible to learn something based on the relations
between the points xi in the feature space. For instance, we introduced earlier on the k-
means algorithm, and the EM for mixture of Gaussians. These clustering algorithms are
unsupervised learning algorithms that use the Euclidean distances between the points in
order to cluster them together. There are other possible conclusions we could potentially
draw; for instance, we could figure out that some of the samples are outliers, i.e., they are
obtained by a different process.

Dealing with the unsupervised case becomes intrinsically difficult when the feature space
is high-dimensional. There are many such cases. Consider for example the task of document
classification; each document can be described by its ’bag of words’, i.e., the histogram of
words used in the document. Thus, a document is described as a vector in a high dimension
(the number of dimensions is the number of words in dictionary). Many of the words are
not informative with respect to the task of classification; ideally, we would like to work in a
lower dimension that is represented only by the words that are relevant to the classification.
Of course, there is a circular argument here, since if we knew which words are relevant we
would know the classification.

There are many other examples for high dimensional data in unsupervised (as well as
supervised) scenarios. When we try to cluster photos, each photo consists of thousands or
sometimes millions of pixels, so we can view them as vectors over millions of dimensions.
In genetics we are usually interested in the clustering individuals based on their genetic
content. Their genetic information consists of more than 20, 000 genes, and the genome of
an individual can be described by a long string of length 3, 000, 000, 000. Thus, in this case
the dimension of each sample is 20, 000 or 3, 000, 000, 000, depending on the study. Again,
if we think of a typical biological process, it will not involve all 20, 000 genes, and ideally we
would like to study only the relevant genes, thus work in a lower dimension.

10.4 Principal Component Analysis

Due to the above limitation of high-dimensional data, we will now introduce a method for
dimensionality reduction. Dimensionality reduction is useful since the number of features
reduces to the number of dimensions, thus the risk of over fitting is lower. We can also view
the task of dimensionality reduction as a compression task - we preserve the structure of
the data (as much as possible) but at a lower dimension. Finally, by reducing the original
dimension to two or three dimensions we can visualized the data - the visualization often
allows us to cluster the data manually, and to exclude outliers from the data.

More formally, assume we have a set of input vectors x1, . . . , xn, where xi ∈ Rm. Let
X = (x1, . . . , xn) be the m × n matrix composed of these vectors as columns. Our goal is
to reduce the dimension m. Particularly, we are interested to find a set of vectors z1, . . . , zn,

10.4. PRINCIPAL COMPONENT ANALYSIS 5

such that zi is a projection of xi on a lower dimensional hyperplane. Note that in this scribe
all the vectors are column vectors. More formally, we are searching for an orthonormal
matrix U of size m× d, where d� m, such that zi = U txi ∈ Rd. Denote the columns of U
by u1, . . . , ud; the orthonormality constraints imply that utiuj = 0 if i 6= j, and ‖ui‖ = 1.

The main question remaining is how do we choose U wisely. We can think of the above
procedure as compression. In the encoding step, we encode xi by assigning zi = U txi ∈ Rd.
In the decoding step we decode zi by extracting x′i = Uzi = UU txi ∈ Rm. Note that the
projection xi → U tUxi ∈ Rm projects the point xi into the space spanned by u1, . . . , ud. To
see this, note that U tUui = ui, and that if v is orthogonal to u1, . . . , ud we have utiv = 0,
and therefore U tUv = U t(Uv) = 0.

Figure 10.1: Geometric interpretation of PCA

This provides a very natural criterion for choosing U . We will choose a matrix U that
minimizes the reconstruction error, i.e.,

??U = arg min
U∈Rm×d

∑
i

‖xi − UU txi‖2. (10.1)

We now consider another possible criterion. Assume without loss of generality that the
data points are centered at zero, that is

n∑
i=1

xi = 0.

Under a generative model in which the points are sampled from a generative distribution,
an unbiased estimate of the variance can be shown to be

V ar(X) =
1

n− 1

n∑
i=1

xtixi.

6 Lecture 10: December 22

The reason for the 1
n−1

coefficient instead of 1
n

is so that the estimate will be unbiased, but
this is not critical, if you are not familiar with statistics you can simply ignore the coefficient
or think of it as 1

n
. The estimate of the variance of the projected distance is:

V ar(X ′) =
1

n− 1

n∑
i=1

xtiUU
tUU txi =

1

n− 1

n∑
i=1

xtiUU
txi =

n∑
i=1

‖U txi‖2. (10.2)

A sensible criterion for dimensionality reduction would be to choose U so that the variance
V ar(X ′) is maximized, i.e., intuitively the structure of the data is preserved as much as
possible. We note, however, the following equality, based on Pythagoras (see Figure 10.2):

‖x′i|2 = ‖U txi‖2 + ‖xi − UU txi‖2.

Since ‖xi‖ does not depend on U , we see that minimizing the reconstruction error
is equivalent to maximizing the variance. The goal in principal component analysis
(PCA) is therefore to minimize the reconstruction error (see Equation ??), and to maximize
the projected variance (Equation 10.2).

Figure 10.2: Pythagoras: ‖x′i|2 = ‖U txi‖2 + ‖xi − UU txi‖2.

10.5 Computing PCA

10.5.1 Computing PCA in one dimension

We first show how PCA is computed when we consider projections to one dimensions, i.e.,
u1 = U ∈ Rm, where ‖u1‖ = 1. In this case, we can rewrite the objective function as

u1 = arg max
u∈Rm,‖u‖=1

n∑
i=1

xtiuu
txi

10.5. COMPUTING PCA 7

It turns out we can reformulate the problem as an eigenvalue problem using the following
observation:

n∑
i=1

xtiuu
txi =

n∑
i=1

(utxi)
2 = ‖utX‖2

2 = utXX tu.

Now, the largest eigenvector v1 of a matrix A can be found by maximizing the following:

v1 = arg max
‖v‖=1

vtAv

Therefore, we get that u1 is simply the eigenvector corresponding to the largest eigenvalue
of XX t.

In order to show that this vtAv is maximized at the dominant eigenvector, let v1, . . . , vn be
the n eigenvectors of A, with corresponding eigenvalues λ1 ≥ . . . ≥ λn. Assume v =

∑
i αivi,

that is, αi = vtiv. Then

vtAv = vt
n∑
i=1

αiAvi = (
n∑
i=1

αiv
t
i)(

n∑
i=1

αiλivi) =
n∑
i=1

α2
iλi. (10.3)

The second equality holds since Avi = λivi as vi is an eigenvector of A, and the third equality
holds since vtivj = 0 if i 6= j, and vtivi = 1. Now,

n∑
i=1

α2
iλi ≤ λ1

n∑
i=1

α2
i = λ1,

where the last equality holds since the vector v is a unit vector. The statement hods since
when setting v = v1 we get vt1Av1 = λ1.

10.5.2 Computing PCA in d dimensions

We now turn to the case of PCA in d dimensions. In this case, we want to maximize∑n
i=1 x

t
iUU

txi. Note that UU t =
∑d

j=1 u
t
juj, and we can therefore write

n∑
i=1

xtiUU
txi ==

n∑
i=1

xti(
d∑
j=1

uju
t
j)xi =

d∑
j=1

utjXX
tuj. (10.4)

This is very similar to the one dimensional case. Again, let v1, . . . , vm be the eigenvectors
of XX t, with eigenvalues λ1 ≥ . . . ≥ λm. We will use the following fact (shown above in
Equation 10.3):

ujX
tXuj =

m∑
k=1

(utjvk)
2λk. (10.5)

8 Lecture 10: December 22

Using Equations 10.4 and 10.5, we get:

n∑
i=1

xtiUU
txi =

d∑
j=1

utjXX
tuj =

d∑
j=1

m∑
k=1

(utjvk)
2λk =

m∑
k=1

λk

d∑
j=1

(utjvk)
2 (10.6)

Now, note that vk is a unit vector, and U is orthonormal, and therefore
∑d

j=1(utjvk)
2 ≤ 1,

and
∑m

k=1(utjvk)
2 = 1, thus

∑m
k=1

∑d
j=1(utjvk)

2 = d. Denote ak =
∑d

j=1(utjvk)
2. Consider the

following linear program:

max
m∑
k=1

λkak

s.t.
m∑
k=1

ak = d

0 ≤ ak ≤ 1

The optimal solution of this linear program is λ1 + . . . + λk. In order to see this, note that
if for some k < d we have ak < 1, we must have k′ > d for which ak′ > 0. Consider an
alternative solution with ak = ak + ε, ak′ = ak′ − ε. This solution has is at least as large
since we increase the total solution by ε(λk − λk′) ≥ 0. Therefore, without loss of generality
ak = 1 for k ≤ d, and the value of the solution is λ1 + . . .+ λk. Based on this, and based on
Equation 10.6 we see that

n∑
i=1

xtiUU
txi =

m∑
k=1

λk

d∑
j=1

(utjvk)
2 =

m∑
k=1

λkak ≤
d∑

k=1

λk.

We note that when uk = vk then ak = 1 for k = 1, . . . , d, and therefore this is an optimal
solution. There are other optimal solutions, and in fact any orthonormal basis spanning the
space defined by v1, . . . , vk is an optimal solution to the PCA. However, we are interested
in the specific solution in which uk = vk, since then we can view the PCA as an iterative
process, in which we first obtain u1 as the maximal eigenvector of XX t, we then compute
u2, as the second largest eigenvector of XX t, etc.

Thus, in order to compute the solution to PCA we need to compute the matrix XX t

and find its d dominant eigenvectors. This task is usually more expensive and less numer-
ically stable than the calculation of the singular value decomposition. Therefore, we will
usually compute the SVD of X, i.e., X = UΣV t, and use the columns of U as the principal
components, i.e., the solution to the PCA.

10.5. COMPUTING PCA 9

10.5.3 PCA - General Comments and Practical Issues

The vectors u1, . . . , ud are called the principal components, and the entries of the vectors are
called the loadings (i.e., the loadings of the first principal component are u11, . . . , u1m. Based
on the previous section, we see that the contribution of the i − th principal component to
the overall variance of the projected data is utiXX

tui = λi. We can therefore determine the
number of PCs based on the eigenvalue distribution, namely, we can calculate exactly the
percentage of variance explained by the first d eigenvectors.

The PC scores are the projection of xi onto each of the principal components. The
scores of the i − th principal component is given by utiX. Now, using the singular value
decomposition X = UΣV t, we observe that

utiX = utiUΣV t =
√
λivi.

Thus, we note that the scores themselves are eigenvectors of X tX, i.e.,

vi =
utiX

‖utiX‖
= arg max

‖v‖=1,∀j<i,vtvj=0
vtX tXv

In practice, in order to get a sensible interpretation of the data, it is recommended to
standardize the features, so that each one of them has a variance 1. Without standardization
different features will contribute differently to the total variance. Take for example a case in
which we measure the weight of people in grams and the height in meters. Clearly, without
normalization most of the variance of the data will appear to arise from the weight, but this
is only due to the fact that we used a highly variant measurement. Notably, in some cases it
is still important to keep the original values if one would like to preserve the original variance
of each feature - for example, arguably when considering PCA on genetic data, it may be
better not to normalize each of the genetic variants if we want to be able to interpret the
biological reason for the PCs.

PCA is a great tool for the discovery of outliers. When considering the first PCs we
can cluster the samples in the projected space, and check whether some of the samples fall
outside the clusters. Often points fall outside the clusters since the process of selecting these
samples or measuring their features was in some way different than the rest of the group (for
instance, maybe these samples incurred many more errors in the measurements).

Typically, the first few PCs capture variation in the data that is an artifact of the process
in which the data was generated. For example, in the case of genetic data the first PCs would
normally represent the situation in which the data was generated, for example in which lab
or which equipment was used to generate the genomic measurements. In the case of PCA
of pictures (e.g., in eigenfaces that will be discussed in the recitation), the first PCs may
reflect the direction of the illumination in the photo, or general properties of the camera
used. Clearly, these type of variation are not of interest when studying genetics or when
studying properties of the photos. One solution to this issue is to simply ignore these PCs

10 Lecture 10: December 22

when treating PCA as a compression tool, or alternatively to regress the data on the first
PCs when treating PCA as a normalization tool.

10.6 Spectral Clustering

We now turn to discuss a topic related to PCA. In this section we will be interested in
clustering data based on a similarity measure between every two samples. First, as a means
of introducing the intuition, we will consider the case in which the similarity of two points
xi, xj is defined as wij = xtixj. Consider the case in which there are two natural clusters A
and B, each of size n

2
, where n is the total number of samples. Assume that the samples in

A are very similar to each other, and that this is also the case for B. Thus, for every i, j ∈ A
we have xtixj ≈ C � 0, and for every i, j ∈ B we have xtixj ≈ C. On the other hand, we
assume that the similarity between pairs of samples that are in the different samples is very
low, i.e., for i ∈ A, j ∈ B, we have xtixj ≈ −D � 0. Consider now the scores of the first
PC. Recall that these scores are given by the dominant eigenvector of X tX, i.e., we need to
consider the unit vector v maximizing the following:

vtX tXv =
∑
i,j

vivjx
t
ixj

=
∑
i,j∈A

vivjx
t
ixj +

∑
i,j∈B

vivjx
t
ixj +

∑
i∈A,j∈B

vivjx
t
ixj

≈ C(
∑
i,j∈A

vivj +
∑
i,j∈B

vivj)−D
∑

i∈A,j∈B

vivj

= C

(∑
i∈A

vi

)2

+

(∑
i∈B

vi

)2
−D(∑

i∈A

vi

)(∑
i∈B

vi

)

It is easy to verify using Lagrange multipliers that the above maximizes when vi = 1√
n

for

i ∈ A, and vj = − 1√
n

for j ∈ B. Thus, by taking the first PC and clustering the points in the
reduced dimension we are able to recover the two clusters exactly. Generally, the clustering
can be done using k-means, however in one dimension we can simply decide on a threshold
(e.g., threshold = 0 in this case), and cluster the data into two sets based on the threshold.

It is convenient to write down the above maximization problem in a different way:

vtX tXv =
∑
i,j

vivjx
t
ixj = −1

2

∑
i,j

xtixj(vi − vj)2 +
∑
i

v2
i x

t
i

∑
j

xj.

Now, since we centered the data in PCA, we use the fact that
∑

j xj = 0, and we note that
the eigenvalue is maximized when pairs of values vi, vj are close to each other when wij = xtixj

10.6. SPECTRAL CLUSTERING 11

is large. This is the intuition for the spectral clustering - we observe that maximizing the
eigenvalue corresponds to the intuitive objective that vi and vi will have similar values when
wij is large, and that they are allowed to be different when wij is small.

The idea of spectral clustering works also for other similarity measures, but we need to
slightly change the objective function. Conceptually, we would like to achieve a situation
in which the data is ’centered’ (intuitively, since the data does not have to be in Rm, so
’centered’ is not necessarily defined. Formally, we are given a graph with non-negative edge
weights defined by a matrix W ∈ Rn×n

+ . The weights correspond to the similarity between
the different vertices. We define the weighted degree of a vertex i as di =

∑n
j=1wij. We also

define D as the diagonal matrix consisting of the vertex degrees in the diagonal:

D =

d1

. . .

dn


We now define the Laplacian of the graph G as L = D−W . Consider the quadratic form of
the Laplacian:

vt(D −W)v =
n∑
i=1

n∑
j=1

vivj(Dij − wij) =
∑
i<j

(vi − vj)2wij

Minimizing the quadratic form results in the same intuition as we described in the example
where wij = xtixj, i.e., we are interested in having vi close to vj when wij is large. Thus,
we are interested in finding the smallest eigenvalue. The smallest eigenvalue, however is not
interesting, since the corresponding eigenvector is simply (1, 1, . . . , 1). Thus, instead, we are
searching for the second smallest eigenvalue. Put differently, we are searching for a unit
vector v, such that

∑n
i=1 vi = 0, which minimizes vtLv. Of course, we can decide to look

at more than one eigenvalue and take the smallest d eigenvectors. In the projected space of
reduced dimension we can run k-mean clustering.

As opposed to PCA, spectral clustering works for for any similarity measure, as long
as the graph weights are positive. Moreover, spectral clustering has the following natural
interpretation. Consider the following score for a cut in the graph:

score(A,B) =

∑
i∈A,j∈B wij∑
i∈A,j∈V wij

+

∑
i∈A,j∈B wij∑
i∈B,j∈V wij

.

The minimum normalized cut problem searches for a partition of the graph into two clusters
A,B, so that score(A,B) is minimized. This criterion is reasonable since we are often
interested in a balanced minimum cut, i.e., a small cut that has many vertices in both A
and B. The problem is NP-hard, and under the assumption that the graph is regular (D
is the identity matrix times a constant), it is possible to show that spectral clustering is a

12 Lecture 10: December 22

relaxation of the normalized cut problem, that is, if we limit the values of vi to take only
two possible values we will be able to solve the normalized cut problem exactly (the proof
is not shown, but you can see Shi and Malik, ”Normalized Cuts and Image Segmentation”,
2000, for more information).

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

0 200 400 600 800 1000 1200 1400
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Figure 10.3: Spectral clustering: on the left are the points in the original space, and on the
right are the points in the space defined by the second smallest eigenvector of the Laplacian
(the y-axis is the eigenvector value of the point, and the x-axis is simply the point ordinal
number in the original set).

Here is an illustration of the power of spectral clustering. Consider the set of points given
in the left subfigure of Figure 10.3. We can define the similarity between every two points
as wij = e−10‖xi−xj‖; note that we have large values for wij when xi is close to xj. The right
subfigure of Figure 10.3 shows the values of the second smallest eigenvalue of the Laplacian.
Clearly, it’d be easy to cluster the blue and red points using this eigenvector.

10.7 Probabilistic View of PCA

Consider the following model. Let z1, . . . , zn be points in Rd, and assume W is a full rank
matrix over Rm×d. Assume that we do not observe the points z1, . . . , zn, and we do not know
what is W (but we know d). Instead, assume we observe the points xi = Wzi + εi, where
εi ∼ N(0, σ2Im), i.e., it is a multivariate normal noise. Thus, we obtain points x1, . . . , xn in
m dimensions, however these points are truly points in d dimensions with additional normal
noise. We would like to treat the problem as a likelihood inference problem. Let us write

10.7. PROBABILISTIC VIEW OF PCA 13

down the log likelihood of the above formulation:

logL(X;Z,W) = −mn log(
√

2πσ)− 1

2σ2

n∑
i=1

‖xi −Wzi‖2.

Thus, maximizing the log likelihood is equivalent to solving the following:

(Ẑ, Ŵ) = arg min
Z,W

n∑
i=1

‖xi −Wzi‖2.

For any fixed W we get a simple linear regression problem, since xi is fixed. The solution
to the linear regression is given by the Normal equations:

ẑi = (W tW)−1W txi.

Note that since W is of full rank, we know that W tW is nonsingular. Note that this as-
sumption is not limiting since if W is not full rank we can change the problem by assuming
that the points zi arise from a smaller dimension. Plugging the regression solution into the
likelihood we get that we need to minimize the following:

Ŵ = arg min
W

n∑
i=1

‖xi −W (W tW)−1W txi‖2.

LetW = USV t be the singular value decomposition ofW . It is easy to see thatW (W tW)−1W t =
US(StS)−1StU t = UdU

t
d, where Ud is the m × d matrix consisting of the first d columns of

U . Thus, we get that maximizing the likelihood is equivalent to maximizing the following:

Ûd = arg min
Ud

n∑
i=1

‖xi − UdU t
dxi‖2.

Therefore, we obtain the exact formulation of PCA. The probabilistic formulation allows
for a few natural extensions to PCA. First, we can deal with PCA with missing data using the
Expectation Maximization algorithm. Second, we can now easily model a mixture of PCAs,
where the assumption is that every point was sampled from a mixture of lower dimension
hyperplanes.

It is worth noting that we treated z1, . . . , zn as parameters, i.e., the assumption is that
these are fixed points. It is possible to add the assumption about the distribution of these
points as well. Specifically, the case in which zi ∼ N(0, τ 2) has been studied in the literature.
This variation of PCA is referred to as probabilistic PCA. The optimization is similar to the
original PCA in that it is sufficient to find the eigenvalues and eigenvectors of XX t in order to
compute the maximum likelihood estimate for W , however the maximum likelihood estimate
of W is not the PCA solution.

14 Lecture 10: December 22

It is interesting to note that the probabilistic interpretation of PCA is analogous to
the probabilistic interpretation of regression. Consider the case of linear regression of one
variable, i.e., under the model x2 = ax1 + ε, where ε ∼ N(0, σ2). Instead of using linear
regression, we can use PCA by considering a different model, i.e.,

(
x1
x2

)
=
(
a1
a2

)
z + δ, where

a1, a2, z are unobserved parameters, and δ ∼ N(0, τ 2I2). As we showed above, the solution
to this problem is the PCA, reducing the two dimensions (x1, x2) into one dimension. The
difference between the two resulting optimizations is shown in Figures ?? and ??

Figure 10.4: Linear regression: minimize the square of the residuals

10.7. PROBABILISTIC VIEW OF PCA 15

Figure 10.5: PCA: minimize the square of the distances from the line

