
Introduction to Machine Learning Fall Semester, 2014

Lecture 2: Nov 2
Lecturer: Eran Halperin Scribe: Yishay Mansour

Some of the material was not presented in class (and is marked with a side line) and is
given for completeness.

2.1 Topics for Bayesian Inference

In the next two lectures we will study about Bayesian inference. We will cover the following
topics:

1. Maximum Likelihood

2. Prior and Posterior distribution

3. Näıve Bayes

4. Expectation Maximization

2.2 Motivation

In the previous lecture we considered the problem of clustering using k-means algorithm.
In that setup we have as input a set of n points and we would like to partition them to k
clusters, where cluster i has a center µi. We had two tasks:

1. For each cluster i find a center µi

2. For each point xj find to which cluster to assign it.

We set an objective function that we wanted to minimize

min
k∑
i=1

∑
j∈Si

‖µi − xj‖22

A natural question is why use this objective. We can change the norm to another norm,
and it will still make sense, but this is a minor change.

One answer might be is that the objective is both natural and computationally attractive
(although finding the global minimum is a hard computational problem).

This raises the question:
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What should be the criteria in selecting an objective function?

We would like it to be computationally attractive, but more importantly, we would like it
to minimize our error. In order to define what we mean by minimizing the error we need to
define the problem more precisely, and this is exactly what we will do today.

At a high level, we have the axiom which is at the core of machine learning:

Historical data and future data come from the same distribution.

This implies that it would be natural to define what is this underlying distribution.

2.3 The Likelihood function

Assume we observe n coin tosses of a coin with bias p and observe the number of ‘heads’.
Namely, we observe a sample drawn from a Binomial random variable with parameters p
and n, let X ∼ B(n, p). Recall that,

Pr
X∼B(n,p)

[X = m] =

(
n

m

)
pm(1− p)n−m

Now assume that the parameter p is unknown. How can we learn p from the data?
We will define a likelihood function,

L(p;X = m) = Pr
X∼B(n,p)

[X = m]

The likelihood function measures the probability of observing the data (X = m) given a
model (a value for p).

Here is the general methodology of the likelihood function. Assume we have a set of
hypotheses to choose from. Normally a hypothesis will be defined by a set of parameters θ.
We do not know θ, but we make some observations and get data D. The likelihood of θ is

L(θ;D) = Prob(D|θ).

We are interested in the hypothesis that maximizes the likelihood.
Back to our example What is the p that would maximize the likelihood?

In order to find the maximizing p, we need to compute

0 =
d

dp
L(p;X = m)

=

(
n

m

)(
mpm−1(1− p)n−m − (n−m)pm(1− p)n−m−1

)
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This is equivalent to

mpm−1(1− p)n−m =(n−m)pm(1− p)n−m−1

equivalently

m(1− p) =(n−m)p

and we derive
pML =

m

n

We need to check that this is indeed the maximum by taking the second derivative. Also,
the above assumes that m 6= 0, n, which can be derived similarly.

2.3.1 Normal distribution

A random variable X is distributed normally with mean µ and variance σ2 is denoted by
X ∼ N(µ, σ2). Intuitively, most of the probability are within µ±2σ (95%) and almost all are
within µ±3σ (99.8%). Here are the the basic parameters of a univariate Normal distribution.
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f(x) =
1

σ
√

2π
· e−

1
2
(x−µ
σ

)2

Pr[a ≤ Z ≤ b] =

∫ b

a

1

σ
√

2π
· e−

1
2
(x−µ
σ

)2dx

E[Z] = µ

V ar[Z] = E[(Z − E[Z])2] = E[Z2]− E2[Z] = σ2

Assume we have a sample of n i.i.d. drawn from N(µ, σ2), where µ and σ are unknown.
Let x1, . . . , xn ∼ N(µ, σ2). We first write the likelihood function

L((µ, σ);x1, x2, . . . , xn) = Pr[x1, . . . , xn|µ, σ] =
n∏
i=1

f(xi) =
n∏
i=1

1√
2πσ2

· e−
1
2
(
xi−µ
σ

)2

We would like to compute the maximum likelihood estimator, i.e., (µ, σ) that maximize
the likelihood.

In order to find the maximum likelihood, we often take the logarithm, which tends to
simplify the mathematical expressions. In addition, taking the logarithm may be critical
in practice since multiplying large number of small numbers might result in significant
numerical problems. Adding the logarithms is much more numerically stable. Back to our
problem, we take the logarithm of the likelihood:

`((µ, σ);x1, x2, . . . , xn) = logL((µ, σ);x1, x2, . . . , xn) =
n∑
i=1

−1

2
(
xi − µ
σ

)2−n
2

log 2π−n log σ

Find the maximum for µ.

∂

∂µ
` =

n∑
i=1

1

σ

(
xi − µ
σ

)
= 0

n∑
i=1

xi = n · µ

µ̂ =

∑n
i=1 xi
n

The second derivative is −n/σ2 < 0, thus we found a maximum.
Note that this value of µ is independent of the value of σ, and it is simply the average of
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the observations. Now we compute the maximum for σ, given that µ is µ̂

∂

∂σ
` =

n∑
i=1

(xi − µ̂)2

σ3
− n

σ
= 0

n∑
i=1

(xi − µ̂)2 = n · σ2

σ̂ =

√√√√ 1

n

n∑
i=1

(xi − µ̂)2

where µ̂ was computed before.

2.3.2 Example: Uniform distribution

Assume we observe n samples from the uniform distribution over [0, θ], i.e, xi ∼ U(0, θ).
What is the maximum likelihood estimator?

Let D = {x1, . . . , xn}. Sort the xi-s and let x(1), < . . . < x(n) be the sorted order.

• For any θ < x(n) we have L(θ;D) = 0

• For any θ ≥ x(n) we have L(θ;D) = 1/θn

This implies that the maximum likelihood estimator is θ̂ML = x(n).

As a motivation, consider the case we are given the times of conversations in a call
center and we would like to learn when is the call center open. We assume that when the
call center is open the call appear uniformly during that time.

Note that in this case it is clear that the ML estimator is an underestimate of the true
parameter θ∗, since we have that xi < θ∗ with probability 1. Therefore, in this case we have

E[θ̂ML] < θ∗

We can take an unbiased estimator, for example take the median or average and multiply
it by two. The expected value would be exactly θ∗. The problem might be that we will have a
larger variance in the estimator. This is a simple example of the well known tradeoff between
bias and variance, where the bias is the expected accuracy, and the variance measures how
likely are we to deviate from the expectation.



6 Lecture 2: Nov 2

Here is the computation of the squared error of the estimator. For the average times
two we have

E

[(
2

∑n
i=1 xi
n

− θ
)2
]

=
4

n2
E

( n∑
i=1

xi

)2
− 4θ

n
E

[
n∑
i=1

xi

]
+ θ2

=
4

n2
[n(n− 1)θ2/4 + nθ2/3]− 4θ

n
[nθ/2] + θ2

=
4

n2
[−nθ2/4 + nθ2/3]

=
θ2

12n

For the maximum we have

E[(x(n) − θ)2] =E[x2(n)]− 2θE[x(n)] + θ2

=
n

n+ 2
θ2 − 2θ

n

n+ 1
θ + θ2

=
−2θ2

n+ 2
+

2θ2

n+ 1

=
2θ2

(n+ 1)(n+ 2)

We can see that the variance in the maximum is significantly smaller for large n.

2.3.3 Multinomial distribution

Assume we have a subset H ⊂ {0, 1}k of strings of k-bits of size t. Let H = {h1, . . . , ht}.
We have a distribution ~p = (p1, . . . , pt) over H. Each time we draw an hi using ~p. We draw
a sample of size n and observe that the word hi appears ci times. We would like to estimate
the unknown multinomial distribution ~p.

We first write the likelihood function:

L(p1, . . . pt; c1, . . . ct) =

(
n

c1

)(
n− c1
c2

)
· · ·
(
n− c1 − · · · − ct−1

ct

)
pc11 · · · pctt

We would like to maximize the likelihood given that ~p is a distribution, i.e.,
∑t

i=1 pi = 1
and pi > 0.

First, consider the log likelihood function,

`(p1, . . . pt; c1, . . . ct) = log

((
n

c1

)(
n− c1
c2

)
· · ·
(
n− c1 − · · · − ct−1

ct

))
+

t∑
i=1

ci log pi
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Since the first term is a constant, we need to solve the following program

max
t∑
i=1

ci log pi

s.t.
t∑
i=1

pi = 1 pi > 0.

In order to solve such a constraint optimization problem we can use Lagrange multipliers.

Consider the following general constraint optimization problem.

maxF (x)

s.t.∀k gk(x) = 0

for k = 1, . . . , n. We can write the following Lagrangian function

L = F (x) +
∑
k

λkgk(x)

The new variables λk are called the Lagrangian multipliers. We claim that the maximum
of the original optimization, x∗, has to be a stationary point of the Lagrangian. Namely,

∇L = 0.

However the other direction does not hold, we might have a stationary point which is not
the solution to the maximization.

Note that ∂
∂λk
L = gk(x), and therefore we implicitly enforce gk(x) = 0 for all k.

For a nice proof and intuition why ∇xF (x) +
∑

k λk∇gk(x), you can look at the
Wikipedia: http://en.wikipedia.org/wiki/Lagrange_multiplier.

In the multinomial example we have

L(~p, λ) =
t∑
i=1

ci log pi + λ

(
1−

t∑
i=1

pi

)

For the gradient we have

∂

∂pi
L =

ci
pi
− λ ∂

∂λ
L = 1−

t∑
i=1

pi

http://en.wikipedia.org/wiki/Lagrange_multiplier


8 Lecture 2: Nov 2

Equating the gradient to zero we have

pi =
ci
λ

λ =
n∑
i=1

ci = n

In order to show that this is indeed a maximum we need to consider the Hessian matrix
H and show that it is negative-definite. It is sufficient to consider the part that involves
the original variables p (without the Lagrangian multipliers). The partial derivatives in
this case are

∂2

∂pi∂pj
L =0,

∂2

∂pi∂pi
L =− ci

p2i
,

Now, for any vector v of n real coordinates,

vHvt = −
n∑
i=1

ci + 1

p2i
v2i < 0

which shows that H is negative definite and therefore the solution is indeed a maximum
point.

2.4 Bayesian Estimators

There is a conceptual question

What do we believe that the true parameter is?

Many times we have some knowledge, or intuition, what are better parameters and what are
less likely ones. If we have a small sample, we might get a very unrepresentative result when
we take the average.

The Bayesian thinking would suggest that the parameter is selected from some distribu-
tion, and then the data is generated given this parameter. So we have the following steps:

1. We select θ from some distribution Pr[θ].

2. We generate the data xi using the model of θ.

A natural task is now, given Pr[θ] to compute

Pr[θ|D]
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Note that for this question to make sense we must have a distribution over θ.
The distribution over θ, Pr[θ], is called the PRIOR distribution. Given Bayes rule we

like to compute a POSTERIOR distribution:

Pr[θ|D] =
Pr[D|θ] Pr[θ]

Pr[D]

We can now define a new estimator, the Maximum A Posteriori (MAP) estimator.

θMAP = arg max
θ

Pr[θ|D]

contrast this with the ML estimator

θML = arg max
θ

Pr[D|θ]

We can rewrite the MAP to be similar to the ML:

θMAP = arg max
θ

Pr[D|θ] Pr[θ]

which follows from Bayes rule (and since Pr[D] does not influence the maximization).

2.4.1 Example: Normal Distribution

Assume we have n samples xi drawn from N(µ, 1), where µ is unknown, but it is known that
it comes with a prior µ ∼ N(0, 1). We have already computed the ML estimator:

µML =

∑n
i=1 xi
n

We would now like to derive the MAP estimator. We have that

log(Pr[x1, . . . , xn|µ]) = −n
2

log(2π)−
∑n

i=1(xi − µ)2

2

and

log(Pr[µ]) = −1

2
log(2π)− µ2

2

Ignoring the constants, we would like to maximize

F = −
∑n

i=1(xi − µ)2

2
− µ2

2
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We can think of this as having an extra point whose value is 0 (for a total of n + 1
points) and we are minimizing the square-distance, like in k-means. We saw that this
maximization problem has a solution when µ is the average. More formally,

d

dµ
F = −µ+

n∑
i=1

(xi − µ) = 0

This is indeed a maximum since

d2

d2µ
F = −1 +

n∑
i=1

(−1) = −(n+ 1) < 0

The MAP estimator is

µ̂MAP =

∑n
i=1 xi
n+ 1

in contrast to the ML estimator

µ̂ML =

∑n
i=1 xi
n

The intuition is that the MAP estimator gives weight to the prior (in this case it can be
viewed as an addition phantom sample whose value is the mean).

We now would like to compute the posterior distribution of a normal distribution. We
assume as before that µ ∼ N(0, 1).

We compute first the probability of µ given the sample x1, . . . xn.
Using Bayes rule we have

Pr[µ|x1, . . . , xn] =
Pr[x1, . . . , xn|µ] Pr[µ]

Pr[x1, . . . , xn]

We would would like to determine the probability up to a multiplicative constant, as a
function of µ, so we can ignore the denominator. We have that

Pr[µ|x1, . . . , xn] ∝
n∏
i=1

1√
2π
e−

1
2
(xi−µ)2 · 1√

2π
e−µ

2/2

∝e−
1
2
(
∑n
i=1(xi−µ)2+µ2)

∝e−
1
2
(−

∑n
i=1 2xiµ+(n+1)µ2)

∝ exp

(
−

(µ−
∑n

i=1
xi
n+1

)2

2/(n+ 1)

)
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In general, consider two distributions f and g. If f(µ) = Cg(µ), for some constant C,
since they both sum up to 1 as distributions, we have to have C = 1 and the distributions
are identical.

We see that the density is proportional to that of N(
∑n
i=1 xi
n+1

, 1
n+1

). This implies that it is
exactly that distribution!

In the case when we have a family of distributions with parameter θ and the posterior is
in the same family, it is called a conjugate prior. The Normal distribution is an example of
a conjugate prior.

Computing the posterior distribution gives us much more information than simply the
MAP. If we “believe” that our prior is indeed correct, then the posterior includes all the
information we have regarding the unknown model. Conceptually, we can think of the
posterior of one stage, as a prior of the next stage, and hence we are always only modifying
our belief in the model. Also, once we have the posterior distribution, we do not need to
maintain any of the samples, since all their information is already included in the posterior.

2.4.2 Beta Distribution

Sometimes we can select a prior in such a way that it will be a conjugate prior.
Consider the case of a Binomial random variable X ∼ B(n, p). What would be a natural

prior?
Probably a natural prior is a uniform distribution over [0, 1], but the posterior distribution

would be far from uniform. We will define a family of distributions, that includes the uniform
distribution, and would be the conjugate prior in such a case, called Beta distributions.

A Beta distribution has two parameters α, β > 0. The density function is f(x) =
xα−1(1−x)β−1

C(α,β)
, where C(α, β) is a constant whose goal is to normalize the distribution to sum

to one. The expected value of the Beta distribution is α
α+β

Assume that the prior over p is Beta(α, β) and we sample n points from B(n, p).
The posterior of p is

Pr[p|X = m,α, β] ∝
(
n

m

)
pm(1− p)n−m · p

α−1(1− p)β−1

C(α, β)

where the first part is the likelihood and the second is the prior. This is proportional to

Pr[p|X = m,α, β] ∝ pm+α−1(1− p)n−m+β−1

Therefore this is simply a Beta distribution with parameters m+ α and n−m+ β.
The MAP is

pMAP =
m+ α− 1

n+ α + β − 2
,
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which is also the mode of the distribution.
Back to the uniform distribution. For α = 1 and β = 1 we have Beta(1, 1) is the uniform

distribution. Therefore, if we would like to consider a uniform prior, we can select Beta(1, 1).
The posterior would be the distribution Beta(m+1, n−m+1) and the MAP would be m/n.

2.5 Näıve Bayes

Assume we are given a data set of patients that has cholesterol level and whether they had
a heart attack. Here is an example:

id cholesterol Heart Attack (HA)
1 150 0
...

...
...

999 240 1

Our goal is to design a classifier that given the cholesterol level will predict whether the
patient will have a heart attack. (Note that the prediction is binary: y = 0 means no heart
attack and y = 1 means heart attack.) Our classifier will be given a cholesterol level x and
predict y.

We assume that the cholesterol level, given HA is a normal distribution. More specifically,

Pr[X = x|HA = 1] ∼ N(µ1, σ
2), Pr[X = x|HA = 0] ∼ N(µ0, σ

2)

This implies that the parameters of our model are θ = {µ1, µ0, σ}. We need to estimate
those parameters from data. One way to do this is using the Maximum Likelihood Estimator.
We would like to determine whether it is more likely that HA = 1 or HA = 0, given X = x.
(This is a simple instantiation of the MAP, selecting the classification with the highest a
posteriori probability.) This implies that we predict y = 1 if,

Pr[y = 1|x]

Pr[y = 0|x]
≥ 1

By Bayes rule we have that

Pr[y = b|x] =
Pr[x|y = b] Pr[y = b]

Pr[x]

Plugging back to the inequality we have

Pr[y = 1|x]

Pr[y = 0|x]
=

Pr[x|y=1]Pr[y=1]
Pr[x]

Pr[x|y=0]Pr[y=0]
Pr[x]

=
Pr[x|y = 1] Pr[y = 1]

Pr[x|y = 0] Pr[y = 0]
≥ 1
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Taking the logarithms we have

log

(
Pr[y = 1]

Pr[y = 0]

)
+ log

(
Pr[x|y = 1]

Pr[x|y = 0]

)
≥ 0

Using our assumption that the x given y is a normal distribution we have,

log

(
Pr[y = 1]

Pr[y = 0]

)
+

1

2σ2

(
(x− µ0)

2 − (x− µ1)
2
)

= log

(
Pr[y = 1]

Pr[y = 0]

)
+
µ1 − µ0

σ2

(
x− µ1 + µ0

2

)
≥ 0

If we assume that Pr[y = 1] = Pr[y = 0] then we are simply testing if x is above or below
the average of the two means.

If we use a maximum likelihood estimator for the parameters then we can do the following.
Let Sb = {i|yi = b}. We set P̂r[y = b] = |Sb|/n and µ̂b =

∑
i∈Sb xi/|Sb|.

It is fairly straightforward to extend it to multiple attributes. Our assumption for the
Näıve Bayes would be that the attributes are independent given the classification. This will
imply that,

Pr[y = 1|x1, . . . , xn] =
Pr[x1, . . . , xn|y = 1] Pr[y = 1]

Pr[x1, . . . , xn]

=
Pr[x1|y = 1] · · ·Pr[xn|y = 1] Pr[y = 1]

Pr[x1, . . . , xn]

Assume that when y = b then xi is distributed normally N(µi,b, σ
2
i ). Taking the logarithm

and using the normality assumption we have,

log

(
Pr[y = 1|x1, . . . , xn]

Pr[y = 0|x1, . . . , xn]

)
= log

(
Pr[y = 1]

Pr[y = 0]

)
+

n∑
i=1

log
Pr[xi|y = 1]

Pr[xi|y = 0]

= log

(
Pr[y = 1]

Pr[y = 0]

)
+

n∑
i=1

1

2σ2
i

(
(x− µi,0)2 − (x− µi,1)2

)
= log

(
Pr[y = 1]

Pr[y = 0]

)
+

n∑
i=1

µi,1 − µi,0
σ2
i

(
x− µi,1 + µi,0

2

)
≥ 0

A few remarks about the Näıve Bayes classifier:

1. A Näıve assumption. Rarely it will hold in practice, so we should not take the assump-
tion “seriously”.

2. Easy to implement. Probably one of the simplest models.

3. Often works in practice. Definitely gives a reasonable baseline results in many appli-
cations.
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Figure 2.1: y = 1: Independent variables Figure 2.2: y = 0: x2 = x1

4. Interpretation: A weighted sum of evidence.

5. Allows for the incorporation of features of different distributions. We can mix normal
distribution with a Bernoulli random variable, for example.

6. Requires small amounts of data. The number of parameters is equal to the number of
classes times the number of attributes. This implies that even with a small sample set,
we can get a reasonable estimate of the parameters.

It is important to see when can the independence assumption can break, and what it
entails. Consider the distribution in Figures 2.1 and 2.2. The marginal distribution are
identical, so Näıve Bayes can not distinguish the two distributions, and the only classification
will come from the sample randomization. On the other hand, it is clear that we can get a
perfect classifier, by simply testing whether x1 = x2.
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