
Introduction to Machine Learning Fall Semester, 2013

Lecture 3: October 27
Lecturer: Eran Halperin Scribe: ym

Some of the material was not presented in class (and is marked with a side line) and is
given for completeness.

3.1 Topics for Bayesian Inference

We will cover the following topics:

1. Maximum Likelihood - previous lecture

2. Prior and Posterior distribution -previous lecture

3. Näıve Bayes - today

4. Expectation Maximization -today

3.2 Näıve Bayes

Assume we are given a data set of patients that has cholesterol level and whether they had
a heart attack. Here is an example:

id cholesterol Heart Attack (HA)
1 150 0
...

...
...

999 240 1

Our goal is to design a classifier that given the cholesterol level will predict whether the
patient will have a heart attack. (Note that the prediction is binary: y = 0 means no heart
attack and y = 1 means heart attack.) Our classifier will be given a cholesterol level x and
predict y.

We assume that the cholesterol level, given HA is a normal distribution. More specifically,

Pr[X = x|HA = 1] ∼ N(µ1, σ
2), Pr[X = x|HA = 0] ∼ N(µ0, σ

2)

This implies that the parameters of our model are θ = {µ1, µ0, σ}. We need to estimate
those parameters from data. One way to do this is using the Maximum Likelihood estimator

1

2 Lecture 3: October 27

(from last lecture). We would like to determine whether it is more likely that HA = 1 or
HA = 0, given X = x. (This is a simple instantiation of the MAP, selecting the classification
with the highest a posteriori probability.) This implies that we predict y = 1 if,

Pr[y = 1|x]

Pr[y = 0|x]
≥ 1

By Bayes rule we have that

Pr[y = b|x] =
Pr[x|y = b] Pr[y = b]

Pr[x]

Plugging back to the inequality we have

Pr[y = 1|x]

Pr[y = 0|x]
=

Pr[x|y=1] Pr[y=1]
Pr[x]

Pr[x|y=0] Pr[y=0]
Pr[x]

=
Pr[x|y = 1] Pr[y = 1]

Pr[x|y = 0] Pr[y = 0]
≥ 1

Taking the logarithms we have

log

(
Pr[y = 1]

Pr[y = 0]

)
+ log

(
Pr[x|y = 1]

Pr[x|y = 0]

)
≥ 0

Using our assumption that the x given y is a normal distribution we have,

log

(
Pr[y = 1]

Pr[y = 0]

)
+

1

2σ2

(
(x− µ0)2 − (x− µ1)2

)
= log

(
Pr[y = 1]

Pr[y = 0]

)
+
µ1 − µ0

σ2

(
x− µ1 + µ0

2

)
≥ 0

If we assume that Pr[y = 1] = Pr[y = 0] then we are simply testing if x is above or below
the average of the two means.

If we use a maximum likelihood estimator for the parameters then we can do the following.
Let Sb = {i|yi = b}. We set P̂r[y = b] = |Sb|/n and µ̂b =

∑
i∈Sb xi/|Sb|.

It is fairly straightforward to extend it to multiple attributes. Our assumption for the
Näıve Bayes would be that the attributes are independent given the classification. This will
imply that,

Pr[y = 1|x1, . . . , xn] =
Pr[x1, . . . , xn|y = 1] Pr[y = 1]

Pr[x1, . . . , xn]

=
Pr[x1|y = 1] · · ·Pr[xn|y = 1] Pr[y = 1]

Pr[x1, . . . , xn]

3.2. NAÏVE BAYES 3

Figure 3.1: y = 1: Independent variables Figure 3.2: y = 0: x2 = x1

Assume that when y = b then xi is distributed normally N(µi,b, σ
2
i). Taking the logarithm

and using the normality assumption we have,

log

(
Pr[y = 1|x1, . . . , xn]

Pr[y = 0|x1, . . . , xn]

)
= log

(
Pr[y = 1]

Pr[y = 0]

)
+

n∑
i=1

log
Pr[xi|y = 1]

Pr[xi|y = 0]

= log

(
Pr[y = 1]

Pr[y = 0]

)
+

n∑
i=1

1

2σ2
i

(
(x− µi,0)2 − (x− µi,1)2

)
= log

(
Pr[y = 1]

Pr[y = 0]

)
+

n∑
i=1

µi,1 − µi,0
σ2
i

(
x− µi,1 + µi,0

2

)
≥ 0

A few remarks about the Näıve Bayes classifier:

1. A Näıve assumption. Rarely it will hold in practice, so we should not take the assump-
tion “seriously”.

2. Easy to implement. Probably one of the simplest models.

3. Often works in practice. Definitely gives a reasonable baseline results in many appli-
cations.

4. Interpretation: A weighted sum of evidence.

5. Allows for the incorporation of features of different distributions. We can mix normal
distribution with a Bernoulli r.v., for example.

4 Lecture 3: October 27

Figure 3.3: Multivariate normal distribution

6. Requires small amounts of data. The number of parameters is equal to the number of
classes times the number of attributes. This implies that even with a small sample set,
we can get a reasonable estimate of the parameters.

It is important to see when can the independence assumption can break, and what it
entails. Consider the distribution in Figures 3.1 and 3.2. The marginal distribution are
identical, so Näıve Bayes can not distinguish the two distribution, and the only classification
will come from the sample randomization. On the other hand, it is clear that we can get a
perfect classifier, by simply testing whether x1 = x2.

3.3 Multivariate Normal Distribution

A multivariate normal distribution is define over vectors, rather than scalars. One simple way
to generate a multivariate normal distribution over d attributes it to first sample n normal
univariate random variables: z1, . . . , zd ∼ N(0, 1). We generate the multivariate distribution
by setting x = Az + µ where A is an d× d matrix and µ is a vector of length d. The vector
µ would be the expected values of the individual attributes. See Figure 3.3 for an example,

with A =

(
2 1
−2 1

)
and Σ = AAt =

(
5 −3
−3 5

)
. In general, since Σ = AAt it is both

symmetric and positive semi-definite. (You can see that Σ is positive semi-definite, since
xtΣx = xtAAtx = ‖Atx‖2 ≥ 0.) The matrix Σ is the variance-covariance matrix of the d
attributes.

3.4. K-MEANS 5

An equivalent definition for a multivariate normal distribution is using its density. X ∼
MVN(µ,Σ), where µ is the means and Σ is the variance-covariance matrix.

f(x) =
1√

(2π)d|Σ|
e−

1
2

(x−µ)tΣ−1(x−µ)

This model has d(d+ 1)/2 parameters in Σ and d parameters in µ.

3.4 k-means

We can now go back to the k-means algorithm from the first lecture and give it a Bayesian
interpretation. Recall that we are given n vectors x1, . . . , xn and a number k and our objective
is to minimize

min
µ1,...,µk,S1,...,Sk

k∑
i=1

∑
j∈Si

‖xj − µi‖2

We can now formulate this problem as a likelihood problem. There are k unknown
clusters S1, . . . , Sk. The points in Si are generated using MVN(µi, I), where I is the identity
matrix. Each point xi originates from a cluster ci.This implies that our parameters are
θ = (c1, . . . , cn, µ1, . . . , µk). The log-likelihood is

`(θ;x1, . . . , xn) = constant−
n∑
i=1

‖xi − µci‖2

Therefore, maximizing the likelihood is equivalent to minimizing the objective function. (The
value of µi is selected to minimize the loss of the points in cluster i, and is set to the average
xi due to the minimization.)

3.4.1 Mixture of Gaussians

In k-means we assumed that each point has to be classified to a specific cluster. This is
a “hard” decision, since we need to decide for each point a single cluster. We can relax
this by having a “soft” decision, where a point will have a distribution over the clusters it
originates from. This lead to a mixture of Gaussian model. In the mixture of Gaussians
we have k Gaussian distribution, and a mixing parameter. The mixing parameter gives
a probability to each cluster.To generate a point, we sample a Gaussian given the mixture
parameter, and then sample the selected Gaussian to generate the point (See Figures 3.4 and
3.5 for an example. The algorithm is unaware of the origin of the points. The data in the
figure was generated with S1 ∼MVN(µ1,Σ1) and S2 ∼MVN(µ2,Σ2) where µ1 = (10, 10),

6 Lecture 3: October 27

Figure 3.4: unlabeled points
Figure 3.5: two clusters, red and blue and
their centers

Σ1 =

(
29.25 13.5
13.5 20.25

)
and µ2 = (0, 0) and Σ2 =

(
9 −3.3
−3.3 18

)
. The mixing parameters

are p1 = 0.25 and p2 = 0.75.)

For simplicity we derive the analysis for a univariate normal distribution,which would be
easier to demonstrate the concepts, and latter we generalize to multivariate normal distri-
butions.

We have k unknown clusters S−1, . . . , Sk, where Si ∼ N(µi, σ
2
i). Each point xi originates

from cluster j with probability pj.

The density function for cluster j is

fj(x) =
1√

2πσ2
j

e
− (x−µ)2

2σ2
j

The likelihood function is,

L((~p, ~µ, ~σ); ~x) =
n∏
i=1

k∑
j=1

pjfj(xi)

where we use the fact that the samples are i.i.d.

We can introduce auxiliary variables ai,j for every point i and cluster j, where we have

3.4. K-MEANS 7

ai,j > 0 and
∑n

j=1 ai,j = 1. We can now lower bound the log-likelihood as follows.

logL((~p, ~µ, ~σ); ~x) =
n∑
i=1

log

(
k∑
j=1

pjfj(xi)

)

=
n∑
i=1

log

(
k∑
j=1

aij
pjfj(xi)

aij

)

≥
n∑
i=1

k∑
j=1

aij log(pjfj(xi))− aij log(aij)

The inequality follows from Jensen’s inequality, that for a concave function F states
that E[F (x)] ≤ F (E[X]) for a non-negative random variable X. the logarithmic function is
concave, and the {ai,j}kj=1 is a distribution.

To show the Jensen’s inequality, recall that if F is concave then F (λx1 + (1− λ)x2) ≥
λF (x1) + (1 − λ)F (x2). Similarly, F (

∑n
i=1 pixi) ≥

∑n
i=1 piF (xi). This essentially proves

the Jensen’s inequality for discrete random variables.

We can now describe an instance of the expectation-maximization (EM) algorithm for
the mixture of Gaussians. The algorithm starts with an initialization (~µ0, ~σ0, ~p0).

In iteration t+ 1 we have:

at+1
ij =Pr(xi ∈ Sj | ~pt, ~µt, ~σt) =

ptjf
t
j (xi)∑k

m=1 p
t
mf

t
m(xi)

(~pt+1, ~µt+1, ~σt+1) = arg max
~µ,~σ,~p

n∑
i=1

k∑
j=1

at+1
ij log(pjfj(xi))

In the maximization we dropped the terms aij log(ai,j) since they do not influence the max-
imization.

The maximization factors out nicely. For the part involving pj we have

~pt+1 = arg max
~p

n∑
i=1

k∑
j=1

at+1
ij log(pj)

pt+1
j =

∑n
i=1 aij
n

where the maximization solution is identical to that in lecture 2, for multinomial distribution.

8 Lecture 3: October 27

For the µ and σ maximization we have,

(~µt+1, ~σt+1) = arg max
~µ,~σ,~p

n∑
i=1

k∑
j=1

at+1
ij log(fj(xi))

µt+1
j =

∑n
i=1 aijxi∑n
i=1 ai,j

σt+1
j =

∑n
i=1 aij(xi − µ

t+1
j)2∑n

i=1 aij

where the maximization is form the derivation of the maximum likelihood for normal distri-
butions (see lecture 2).

We can define a g function:

ga(~p, ~µ, ~σ) :=
n∑
i=1

n∑
j=1

aij log(pjfj(xi))− aij log(aij)

Note that g depends on a, but we consider as as constants in g.
For the log-likelihood, by construction, for any a we have,

logL((~p, ~µ, ~σ); ~x) ≥ ga(~p, ~µ, ~σ)

We like to find an a such that

logL((~p, ~µ, ~σ); ~x) = ga(~p, ~µ, ~σ)

This would hold if all the terms are identical in the log likelihood. Namely,

ptjf
t
j (xi)

at+1
i,j

= constant

For this we need that at+1
i,j ∝ ptjf

t
j (xi). Since we need it to be a distribution, we set

at+1
i,j =

ptjf
t
j (xi)∑k

r=1 p
t
rf

t
r(xi)

= Pr[ci = j|θt, xi]

Given that this is the way we select a, we have the following,

logL((~pt+1, ~µt+1, ~σt+1); ~x) ≥ga(~pt+1, ~µt+1, ~σt+1)

≥ga(~pt, ~µt, ~σt)
= logL((~pt, ~µt, ~σt); ~x)

where the first inequality holds for any a. The second inequality follows since (~pt+1, ~µt+1, ~σt+1)
is the solution to the maximization, given a. The last equality follows from the fact that we
selected a the way we did.

This implies that in every iteration the log-likelihood can only increase.

3.5. EXPECTATION MAXIMIZATION (EM) 9

3.5 Expectation Maximization (EM)

We now generalize the EM algorithm in general. Let D be the given data, θ the parameters
to be estimated, Z the missing (latent) variables. (In the mixture of Gaussians the Z is the
probabilities that xi was generated by each cluster cj.)

The EM algorithm alternates between an E-step and an M -step. In the E-step we
compute an expectation over the latent variable Z.

E-step Q(θ|θt) = EZ|D,θt [log Pr(D,Z|θ)]

The input to the Q function is θ, a complete model. The output is the log-likelihood, whether
the expectation is taken over the latent variables. Many times the Q function factors nicely
between the different parameters, as in the mixture if Gaussians.

The M -step, computes a maximization of the Q function.

M-step θt+1 = arg max
θ
Q(θ|θt)

We can now compute the change in the log likelihood,

logPr(D | θ) = log

(∑
z

Pr(D, z | θ)

)

= log

(∑
z

az
Pr(D, z | θ)

az

)
≥

∑
z

az log (Pr(D, z | θ))−
∑
z

az log(az)

= Q(θ | θt)− constant

As before,

logPr(D | θt+1) ≥ Q(θt+1 | θt)− constant

≥ Q(θt | θt)− constant = logPr(D | θt)

where the first inequality holds in general. The second inequality follows since θt+1 is the
solution to the maximization. The last equality follows from the fact that we selected a the
way we did.

As before, we can set

g(θ) = Q(θ|θt)−
∑
z

az log(az)

Again we have

log Pr(D|θt+1) ≥ g(θt+1) ≥ g(θt) = log Pr(D|θt)

10 Lecture 3: October 27

Figure 3.6: EM algorithm

This implies that the likelihood can not decrease.
In Figure 3.6 we can see an iteration of the algorithm. The red curve is the log-likelihood.

Given a parameter θt we set a function g(θ) which equals the log-likelihood at θt. Maximizing
g(θ) gives θt+1, which leads to an increase in the log-likelihood.

Remarks on the EM algorithm:

• No guarantee of optimization to local maximum. We are guarantee no to decrease, but
we might get stuck at a saddle point.

• No guarantee of running times. The improvements might be very slow.also, the mag-
nitude of the improvements need not be monotone.

• Often it takes many iterations to converge.

• Efficiency: no matrix inversion is needed (e.g., in Newton). Generalized EM - no need
to find the max in the M-step.

• Easy to implement. Especially in cases where there are close form solution for the E
and M steps.

• Numerical stability.

• Monotone - it is easy to ensure correctness in EM. Simply check that the likelihood
increases.

• Interpretation - provides interpretation for the latent variables.

