
Introduction to Machine Learning Fall Semester, 2013

Lecture 4: November 3
Lecturer: Yishay Mansour Scribe: ym

4.1 The PAC Model and Model Selection

In this lecture we introduce the PAC model. The PAC learning model is one of the important
learning model. PAC stands for Probably Approximately Correct, our goal is to learn a
hypothesis from a hypothesis class such that in high confidence we will have a small error
rate (approximately correct). We start the lecture with an intuitive example to explain the
idea behind the PAC model and the differences between the PAC model and the Bayesian
learning that we studied. Then, we continue to formal the PAC model, and give a few
examples. In the second part of the lecture we discuss model selection strategies.

4.2 An intuitive example

Suppose we want to predict a ’typical person’. Our input is a sample of different attributes
of people which includes their height and weight and their label: whether it is a typical
person (’+’) or not (’-’). Let H be our hypothesis class. In our example, H will be the set of
all possible rectangles on a two-dimensional plane which are axis-aligned (not rotated). One
example of hypothesis h ∈ H can be: mark a person which denotes as (height, weight) to be
a typical one (’+’) if its description is in the range of:

1.60 ≤ height ≤ 1.90, 60 ≤ weight ≤ 90

Assuming the real target function is a rectangle (this assumption will be addressed later on).
Our goal is to find the best rectangle R′ that approximates the target rectangle target R. In
general, we will try to learn an accurate predictor which will optimize our accuracy.

The PAC learning model is different in spirit from the Bayesian inference, where we
assumed that the underlying distribution has a specific form and our goal is to estimate this
distribution. In PAC model, we do not know (or assume) anything about the underlying
probability distribution of the samples. In our example, the typical people distribution is
unknown and finding the joint distribution of height and weight is a difficult task.

Generally, in the PAC model, we do not impose any assumptions on the underlying
distribution of the examples other than that such a distribution exists and the examples
are independently and identically distributed (i.i.d) according to that distribution. If the
test examples were taken from different distribution than the training examples, there is no

1



2 Lecture 4: November 3

Figure 4.1: A rectangle with positive and negative examples

Figure 4.2: R and R′ areas including two different error spaces. In our example, since R′ ⊆ R
there exists only error of (R−R′).

reason to expect to learn a low error hypothesis. This critical assumption is at the base of
almost all the machine learning approaches.

The learning problem we described can be viewed as follows:

• Goal: Learn rectangle R.

• Input: Examples based on data set and their label: 〈(x, y),+/−〉.

• Output: R′, a good approximation rectangle of the real target rectangle R. (An
example of R′, see Figure 4.1)

4.2.1 A Good Hypothesis

Our goal is to find a hypothesis that will have a small error rate, smaller than an input
parameter ε. Let R∆R′ be the error of R′ in respect to the real target rectangle R. This
can be defined by two separate areas: (R−R′)∪ (R′−R) (where (R−R′) are false negative
and (R′ −R) are false positive) as shown in Figure 4.2.



4.3. A FORMAL PRESENTATION OF THE PAC MODEL 3

Figure 4.3: The smallest Rmin (dashed line) and largest Rmax (dotted line) rectangles border
the rectangles which are consistent with the examples. The area between them represents
the error region.

Then, our goal can be defined as to find R′ ∈ H such that with probability of at least
1− δ (confidence) such that,

Pr[error] = D(R∆R′) ≤ ε,

where we assume that R ∈ H.

4.2.2 Learning Strategy

Let S = {〈(x1, y1, b1)〉, ..., 〈(xm, ym, bm)〉} be the sample. Intuitive, we would like a rectangle
that will be consistent, i.e., zero error on the training data S. This is possible since we
assumed that there exists a rectangle R ∈ H (the target rectangle) that labels correctly any
example. Even with the restriction to output a consistent rectangle R′ ∈ H we have a lot of
freedom. We can choose any rectangle from the minimal size (Rmin) up to the maximal size
(Rmax), as shown in Figure 4.3. We will show later, that it does not matter which consistent
rectangle the algorithm returns.

4.3 A formal Presentation of the PAC Model

4.3.1 Preliminaries

• The goal of the learning algorithm is to learn an unknown target concept out of a
known concept class, for example to learn a particular rectangle out of the set of all



4 Lecture 4: November 3

rectangles. Unlike the Bayesian approach, no prior knowledge is assumed.

• Learning occurs in a stochastic setting. Examples from the target rectangle are drawn
randomly according to a fixed, unknown probability distribution and are i.i.d.

• We assume that the training and testing samples are generated by the same unknown
probability distribution.

• The algorithm should be efficient: the sample size required for obtaining small (ε) error
with high (1−δ) confidence is a function of 1

ε
and ln 1

δ
. Also, we can process the sample

within a time polynomial in the sample size.

4.3.2 Definition of the PAC Model

Let the set X be the instance space or example space. Let D be any fixed probability
distribution over the instance space X. A concept class over X is a set

C ⊆
{
c | c : X → {0, 1}

}
.

Let ct be the target concept, ct ∈ C. Let and h H be the learned hypothesis, where the
hypothesis class H. Generally, H may be a different concept class than C. We will define the
error of h with respect to the distribution D and the target concept ct as follows:

error(h) = Pr
D

[h(x) 6= ct(x)] = D(h∆ct(x))

Let EX(ct,D) be a procedure (we will sometimes call it an oracle) that runs in a unit
time, and on each call returns a labeled example 〈x, ct(x)〉, where x is drawn independently
from D. In the PAC model, the oracle is the only source of examples for the learning
algorithm.

Definition Let C and H be concept classes over X. We say that C is PAC learnable by
H if there exists an algorithm A with the following property: for every concept ct ∈ C, for
every distribution D on X, and for all 0 < ε, δ < 1

2
, if A is given access to EX(ct,D) and

inputs ε and δ, then with probability at least 1− δ, A outputs a hypothesis concept h ∈ H:
If ct ∈ H (Realizable case), then h is satisfying

error(h) ≤ ε

If ct /∈ H (Unrealizable), then h is satisfying

error(h) ≤ ε+ min
h′∈H

error(h′)

We say that C is efficiently PAC learnable, if A runs in time polynomial in 1
ε
, ln 1

δ
, n and

m where n is the size of the input and m the size of the target function, (for example, the



4.4. FINITE HYPOTHESIS CLASS 5

number of bits that are needed to characterize it). Implicit, we mean that it is “easier” to
learn a “simpler” target function.

4.4 Finite Hypothesis Class

In this section, we show how to learn a good hypothesis from a finite hypothesis class H.
The idea is to bound the probability that a hypothesis h is ε-bad, where a hypothesis h is
ε-bad if error(h) > ε.

4.4.1 The Realizable case (ct ∈ H)

Generally, given m(ε, δ) example, we will request our algorithm A to find an h which is
consistent with the training sample S, i.e., classifies all the examples in S correctly, which
means that ∀x ∈ S we have h(x) = ct(x). The algorithm A will succeed to learn if h is not
ε-bad, i.e., error(h) < ε. We note that at least one consistent hypothesis exists because we
assume that ct ∈ H.

We bound the probability of algorithm A to return h that is ε-bad by bounding by δ the
probability that some consistent hypothesis is ε-bad. To start, fix an h which is ε-bad:

Pr[h is ε-bad & h(xi) = ct(xi) for 1 ≤ i ≤ m] ≤ (1− ε)m < e−εm,

where the first inequality is derived from the fact that since h is ε-bad we have Pr[h(x) =
ct(x)] ≤ 1− ε and the fact that the examples are sampled i.i.d from distribution D. Now we
bound the probability of failure of algorithm A, as follows:
Pr [ A returns an ”ε-bad” hypothesis] =

Pr[∃h ∈ ε-bad & h(xi) = ct(xi) for 1 ≤ i ≤ m]

≤
∑

h∈ε-bad&h∈H

Pr[h(xi) = ct(xi) for 1 ≤ i ≤ m]

≤ |{h : h is ε-bad & h ∈ H}|(1− ε)m

≤ |H|(1− ε)m < |H|e−εm,

where the first inequality follows from the union bound, the second inequality follows from
the analysis for a fixed ε-bad hypothesis, and the third inequality is immediate since,

|{h : h is ε-bad & h ∈ H}| ⊆ H.

In order to satisfy the condition for PAC learning, we bound the failure probability by δ:

|H|e−εm ≤ δ,



6 Lecture 4: November 3

which lower bounds the sample size,

m ≥ 1

ε
ln
|H|
δ
.

We note that for a finite class of hypothesis H, any consistent algorithm A PAC learns
C = H using H. As expected the bound tells us that the larger the hypothesis class H,
the larger the sample we require. However it is not clear how to implement the consistent
algorithm efficiently, and in general it will not be efficient. Also, the above analysis only
works for finite classes.

4.4.2 The Unrealizable case (ct 6∈ H)

In this case, we need to relax our goal, since a small error hypothesis might not exist in H.
As we defined before, our goal is to learn according to the “best” hypothesis in the hypothesis
class (i.e., with the minimal error). Let h∗ be the hypothesis with the minimal error, i.e., for
every h ∈ H:

0 < error(h∗) ≤ error(h) .

Let β to be β = error(h∗) = min
h∈H

error(h). Our goal is to find hypothesis h that will achieve:

error(h) ≤ β + ε .

Note that this is a generalization of our previous system (in which β = 0).

Given m(ε, δ) training examples S, we define êrror(h) to be the empirical error of h on
sample S. Formally:

êrror(h) =
1

m

m∑
i=1

I(h(xi) 6= ct(xi)),

where I is the indicator function.

We also need to define the algorithm, since now it may be impossible to choose a consistent
h. Algorithm A will return a hypothesis h̄ that will have the minimal empirical error. That
is, h̄ = argmin

h∈H
êrror(h) (If there exists more than one hypothesis, the algorithm will pick

one of them.) This algorithm is called Empirical Risk Minimization (ERM).

We will now bound the sample size required for obtaining a good hypothesis using ERM.
We want to choose a sample size m such that for any hypothesis, the difference between the
true and the observed error is small. That is, with probability at least 1− δ:

∀h ∈ H, |êrror(h)− error(h)| ≤ ε

2
.



4.4. FINITE HYPOTHESIS CLASS 7

If we have a uniform good error estimation, we can derive easily that using the hypothesis h̄
from algorithm ERM, we obtain:

error(h̄) ≤ êrror(h̄) +
ε

2
≤ êrror(h∗) +

ε

2
≤ error(h∗) + ε,

where the first and third inequality hold since the difference between the true and the ob-
served error is small (up to ε

2
), and the second inequality holds since ERM selects the

hypothesis with the minimal empirical error.

To conclude our bound for the sample size we need to bound the probability of failure in
estimating error(h). We will use Chernoff bound1 and derive that,

Pr[ |êrror(h)− error(h)| ≥ ε

2
] ≤ 2e−2( ε

2
)2m

We can use Chernoff bounds since the m training examples are drawn i.i.d from the same
distribution D. We can get a bound on the sample size by requiring the probability of failure
over H to be smaller than δ:

Pr[∃h ∈ H : |êrror(h)− error(h)| ≥ ε

2
] ≤ 2|H|e−2( ε

2
)2m ≤ δ ,

hence

m ≥ 2

ε2
ln

2|H|
δ

We established a bound on the sample size for PAC learning when ct 6∈ H.

Note that the sample size depends on 1
ε2

instead of 1
ε

in the realizable case (ct ∈ H).
This results from the difference between requiring a single counter-example to disqualify a
hypothesis (since for some hypothesis error(h) = 0), to the requiring many examples to
disqualify a hypothesis, by estimating the observed error.

4.4.3 Example - Learning Boolean Disjunctions

To demonstrate the PAC model we consider the example of learning Boolean disjunction
functions. The problem is defined as follows: Given a set of boolean variables T = {x1, ..., xn}
and a set of literals L = x1, x̄1, . . . xn, x̄n . we need to learn an Or function over the literals, for
example: x1∨x̄3∨x5. Let C will be the set of all possible disjunctions. We have that|C| = 3n,
since for each variable xi the target disjunction ct may contain xi, x̄i, or neither. We will
assume H = C.

1see more about concentration bounds in Section 4.8



8 Lecture 4: November 3

ELIM algorithm for learning boolean disjunctions

Given a negative example we can eliminate all literals that evaluate to 1. For example, if
given an example 001 (assume 0 was the value of x1 and x2 and 1 was the value of x3) which
was negative we can eliminate the literals x̄1, x̄2, x3. This is valid since if one of them was
in the target disjunction the target function would be positive. The algorithm uses this fact
and eliminates all the inconsistent literals. We also notice that the algorithm classifies the
positive examples correct because the literal in the target disjunction are never eliminated,
and we have ct ⊆ Lfinal.

The algorithm ELIM initializes a set L = x1, x̄1, . . . xn, x̄n, and for each negative sample
Z it updates L = L− {z̄i|zi ∈ Z}.

From previous sections we can see that the algorithm learns when the sample size:

m >
1

ε
ln
|H|
δ

=
1

ε
ln

3n

δ
=
n ln 3

ε
+

1

ε
ln

1

δ

4.5 Infinite Hypothesis Class

We have already seen an example of PAC learning from an infinite concept class. The
theoretical approach in this case will be briefly presented later in this lecture and in greater
detail in a future talk. Here is another example:

Let X be the interval [0, 1].
Let H be a concept class over X:

H = {cθ | 0 ≤ θ ≤ 1}

and

cθ =

{
1 x ≥ θ
0 otherwise

4.5.1 The Case ct ∈ H
Proof I
Let’s choose m examples and define:

min{x | ct(x) = 1} = max,

and
max{x | ct(x) = 0} = min.

We shall choose a value θ ∈ [min,max] and return cθ. It is enough to show that with
probability 1−δ the weight of the interval [min,max] under D is at most ε. This is sufficient



4.5. INFINITE HYPOTHESIS CLASS 9

because errors will occur only on this interval. Let’s analyze the probability that m samples
will not be taken from the interval [min,max] . Suppose

D([0max, 1min]) ≥ ε

The probability that we did not sample in [min,max] is (1−ε)m, then using the inequality
(1− x) ≤ e−x we get:

(1− ε)m ≤ e−εm ≤ δ

so it is enough that:

m ≥ 1

ε
ln

1

δ
.

This proof is wrong - why?
Note that min and max where determined only by the sample. Therefore, in the sample
there is point between them! Consequently we can not make a probabilistic assumption on
the sample, since it is already fixed. To correct we will need to define the events independent
of the sample.

Proof II
We shall Define parameters which do not depend on the sample. Let max

′
and min

′
be the

points which are ε/2 close to θ. Namely, max
′

: D[θ,max
′
] = ε/2 and min

′
: D[min

′
, θ] =

ε/2. Note that θ is the target we try to learn. The goal is to show that with high probability
(1− δ): max ∈ [θ,max

′
], and min ∈ [min

′
, θ]. In this case any value between [min,max] is

good and could be returned by the algorithm, since now D[min,max] < ε, and D is the real
distribution (not just the sample).

We have that

Prob[x1, x2, . . . , xm 6∈ [min
′
, θ]] = (1− ε

2
)m < e

−mε
2

The failure probability for [θ,max
′
] is derived similarly. Finally we get:

2e
−mε

2 < δ.
Hence: m > 2

ε
ln2

δ
.

Remember that min
′
,max

′
where chosen with no dependence on the sample.

4.5.2 The Case ct 6∈ H

This case corresponds to noisy data or a more complicated labeling function than those
represented by {cθ}.

In this case we can not find some c∗θ which we would like to approximate because
functions with a similar error may use values of θ very far from each other.



10 Lecture 4: November 3

For a sample size m, there are m + 1 possible hypotheses according to the intervals
between samples (the values of θ within an interval are equivalent in the sense that they
produce the same learning error.) We can thus choose the hypothesis which will minimize
the error on the examples.

For a given distribution D, let 0 = z0 < z1 · · · < zk = 1 such that D([zi, zi+1]) = ε
4

(this is called a ε
4

net). Let halg be the output of the learning algorithm, h∗ an optimal
hypothesis, and hzi the hypothesis with θ = zi. Our definition of the {zi} implies that
there exist zj and zk such that:

error(hzj)− error(h∗) ≤
ε

4
,

and

|error(hzk)− error(halg)| ≤ ε

4
,

We will show that when the sample size is large enough, for every zi, with a high
probability, |error(hzi)− obs error(hzi)| ≤ ε

4
. That implies error(halg)− error(h∗) ≤ ε.

Let
qi = PrD[ct(x) 6= hzi(x)],

and q̂i be the estimate of qi calculated from the sample. Using Chernoff bounds we get

Pr[ |q̂i − qi| ≥
ε

4
] ≤ e−( ε

4
)2m .

Since the number of zi’s is 4
ε
, the probability of an estimation error larger than ε

4
may be

bounded by

Pr[ |error(hzi)− obs error(hzi)| ≥
ε

4
] ≤ 4

ε
· e−( ε

4
)2m < δ .

Therefore, we have to choose a sample whose size is:

m ≥ 16

ε2
[ln

4

ε
+ ln

1

δ
] .

4.5.3 General ε-Net approach

An ε-net is a set G ⊂ H such that for every h ∈ H there exists g ∈ G such that

ProbD[g(x) 6= h(x)] ≤ ε .

The algorithm will first find an ε
4
-net for H which will be represented by the set {hzi},

and returns the optimal hi of the net. In general, the sample size required for a confidence



4.6. MODEL SELECTION - INTRODUCTION 11

of 1− δ when an ε
4

of G is known is

m ≥ 16

ε2
ln
|G|
δ
.

The derivation of that bound is similar to that done in the preceding section.
We can use the above argument to reduce many infinite size concept classes to finite one.

Here are two interesting examples.

1. Polynomials. Let fa(x) = 1 if
∑d

i=0 aix
i > 0 and otherwise 0, and assume that

x ∈ [0, 1]. With the appropriate discritization we can show that there is an ε-net with
O((1/ε)d+1) values of a. This will translate to an “effective hypothesis class size” of
log |H| = O(d log(1/ε).

2. Hyperplanes. Let fw(x) = 1 if
∑d

i=0 wixi > 0 and otherwise 0, and assume that
x ∈ [0, 1]. Again, with the appropriate discritization we can show that there is an ε-net
with O((1/ε)d+1) values of a. This will translate to an “effective hypothesis class size”
of log |H| = O(d log(1/ε).

4.5.4 The VC Dimension

The question of determining the sample size required for achieving a given confidence when
the hypothesis class is infinite is generally addressed by the VC dimension (Vapnik-Chervonenkis).

The VC dimension of H is the maximal number of points, d, which can be labeled in
all the 2d possible combinations by concepts from H. The VC dimension is a substitute
for ln |H| in the expressions for sample size bounds.

The notion of VC dimension avoids the need of discretization and the loss associated with
it.

4.6 Model Selection - Introduction

So far, each learning model determined the number of examples needed in order to learn a
concept class. However, in many real cases, only a limited number of examples is available,
and the learning algorithm is supposed to come up with the best hypothesis it can from the
available data.

In the algorithms discussed previously, we solved accuracy problems of our hypothesis
by requiring a sufficiently large number of examples, which reduces the probability of the
hypothesis’ error. We now deal with the case in which this cannot be done.



12 Lecture 4: November 3

4.6.1 Discussion

To demonstrate the problem, let’s look at the concept class of a finite union of intervals
on the line [0,1] (which has V Cdim = ∞). Let us assume that we’re given the following
examples in the interval [0,1] :

+ + + - + + - - - - + - - + - - -

| |

0 1

The target concept ct is a set of intervals within [0,1].

Obviously, if we allow a sufficiently large number of intervals, we could easily come up with
a hypothesis that is completely consistent with the data (e.g. surround every positive point
with its own tiny positive interval). However, we want to predict the correct classifications
also for examples other than the original training set.

Adding more intervals to our hypothesis reduces the hypothesis’ error on the training set,
but may increase its error on new examples. For example, a positive interval surrounding
a positive point may consist in the target concept of a 2/3 negative sub-interval and a 1/3
positive sub-interval, so adding this interval to the hypothesis can increase its “real” error.
This way we may get hypotheses which are overfitted to the data, and may not generalize
well to new examples.

Therefore, by Occam’s Razor, in such cases we prefer simpler hypotheses which may
have some error on the training set, but with high probability will predict better future
observations. Returning to our example, we can make a table of the amount of errors
generated by a hypothesis related to the number of intervals in the hypothesis :

Number of Intervals: 0 1 2 3 4 5 6 7 . . .
Number of Errors: 7 3 2 1 0 0 0 0 . . .

We can see that the more complex the hypothesis is, the smaller its error on the given
examples. Beyond a certain complexity, all hypotheses yield 0 errors. So far, we’ve considered
only those hypotheses which yield 0 errors on the training set, but now we’re limited to the
given examples and these examples may not be representative of the domain. Therefore, we
want to consider simpler hypotheses, which may have some errors on the training set but
generalize better to new examples.

To make the things worse, there is still the problem of noise. For a hypothesis to be
completely consistent with the data, it becomes very complex. However, some of the incon-
sistencies in the data may be due to “noise”, and the true concept may be much simpler than
our consistent hypothesis. In the given example, the true concept may consist of a single
interval (e.g. [0, 1/2]), and the inconsistent examples were generated due to noise. In such
a case, adapting our hypothesis to the data causes the noise to get into the hypothesis.



4.7. THEORETICAL MODEL 13

So now we have to deal with a sample set which may be too small to accurately represent
the domain, and may itself be “noisy”.

In the following sections we’ll consider different models for dealing with this problem.
But first we’ll start with building the theoretical model.

4.7 Theoretical Model

4.7.1 The Setup

Let us consider the following theoretical model.

Let Hi be the class of hypotheses, all having the same complexity-level, i (where
V Cdim(Hi) = i). Clearly, we get nested hypothesis classes :

H1 ⊆ H2 ⊆ · · · ⊆ Hi ⊆ · · ·

any hypothesis of a lower complexity is included in any class of hypotheses of a higher
complexity. Let H = ∪∞i=1Hi.

For the sake of simplicity, we will assume

|Hi| = 2i−1.

Let c∗ be the the target concept. In contrast to our previous methods, we now do not
assume that c∗ is included within one of the Hi. The objective of the learning algorithm will
be to produce a hypothesis which is ”sufficiently close” to c∗ (but not necessarily c∗ itself).

4.7.2 Definitions

• ε(h) - the ”real” error of h, i.e. the error of h over the entire domain X.

ε(h) = Prob
[
h 6= c∗

]
• εi - the lowest error found for any of the hypotheses in class Hi.

εi = min
h∈Hi

{
ε(h)

}
Note that since Hi ⊆ Hi+1, εi+1 ≤ εi (the probability of error decreases as the com-
plexity level increases).



14 Lecture 4: November 3

• ε∗ - the optimal error level, i.e. the value towards which εi converges as i increases.

ε∗ = inf
i

{
εi
}

It might be that ε∗ will not be obtained by any hypothesis h ∈ H, but it is the lower-
bound on any εi and could be approximated arbitrarily well. If for some i, c∗ ∈ Hi

then ε∗ = 0.

• ε̂(h) - the observed error, i.e. the error of hypothesis h on the given examples.

ε̂(h) =
1

m

∑
xi∈S

I(h(xi) 6= ct(xi)) ,

where S is the given set of m examples.

• ε̂i - the lowest observed error of any of the hypotheses in Hi.

ε̂i = min
h∈Hi

{
ε̂(h)

}
.

4.7.3 The Problem: Overfitting

As the complexity level i of the hypothesis increases, its error on the given data ε̂i is reduced.
Beyond complexity level m (where m is the number of examples in the given set) all the ε̂i
will equal 0.

This will happen even when the same hypothesis’ real error-level, ε(h) (i.e., measured
over the entire domain), is greater than 0, and even when ε∗ >> 0.

This happens because at high levels of complexity, the hypotheses (with the lowest levels
of error on the given data) become too fitted to the given data. This phenomenon is called
overfitting.

In our case, we can not require a sufficiently large set of examples. The given data may
be too small to accurately represent the entire domain. The presence of noise makes the
given data even less representative of the entire domain. Thus, the overfitted hypothesis
might turn out to be quite far from the true concept.

The simplistic approach for finding a good hypothesis would be to choose a hypothesis g
which has the lowest value of ε̂(g):

g = arg min
h∈∪Hi

{
ε̂(h)

}
However, using this simplistic approach for choosing g will cause us to prefer overfitted

hypotheses, because they yield the lowest ε̂(h), namely zero observed error.



4.7. THEORETICAL MODEL 15

4.7.4 Penalty Based Model Selection

One way to overcome the overfitting problem is to impose a complexity penalty on the
complexity of the chosen hypothesis; we will then try to minimize both the observed error
of the chosen hypothesis and its complexity penalty.

The chosen hypothesis g∗ will, therefore, be defined as

g∗ = arg min
g ∈∪Hi

{
ε̂(g) + Penalty(g)

}
,

where Penalty(g) depends on the complexity of g.

We will define a measure d(h) for the complexity of a hypothesis h as the lowest complexity
level i such that h is found in Hi:

d(h) = min
i

{
h ∈ Hi

}
.

Since the penalty is calculated based on d(h), which is the first class in which h is found,
the penalty will be the same for all hypotheses with the same complexity.

Figure 4.4: Principle of penalty based models.

Figure 4.4 shows the principle of penalty based models. As the complexity level of the
hypothesis increases, its observed error is reduced but the penalty for its complexity increases.
The penalty based model will try to find the minimum of the sum of the observed error and
the penalty. Thus we will choose hypotheses that are not too fitted to the given examples.



16 Lecture 4: November 3

4.7.5 SRM: Structural Risk Minimization

The Model

The SRM (Structural Risk Minimization) model is a penalty based model, which uses the
following as the Penalty :

Penalty(h) =

√
2d(h) · ln(2) + ln(1/δ)

m
, (4.1)

where m is the number of examples, and δ is a confidence parameter (its meaning will be
clear in the following section). This penalty defines a tradeoff between the complexity of the
hypothesis and the size of the given sample. The hypothesis g∗ chosen by the SRM model
will therefore be:

g∗ = arg min
g ∈H

{
ε̂(g) + Penalty(g)

}
(4.2)

Analysis

Let h∗ be the best possible hypothesis there is in H, i.e., the hypothesis with the lowest
actual error-level (error measured over the entire domain):

h∗ = arg min
h∈H

{
ε(h)

}
. (4.3)

Let g∗ be the hypothesis chosen by SRM, i.e. (4.2).

Theorem 4.1 (SRM Theorem) With probability of at least 1− δ the actual error of g∗

is smaller than or equal to the actual error of h∗ plus twice the SRM complexity-penalty
of h∗. Formally :

ε(g∗) ≤ ε(h∗) + 2 · Penalty(h∗) (4.4)

Recall that by definition (of h∗) the actual error of h∗ is smaller than or equal to the
actual error of g∗. So, according to the SRM theorem, the actual error of g∗ is bounded
on both sides by:

ε(h∗) ≤ ε(g∗) ≤ ε(h∗) + 2 · Penalty(h∗) (4.5)

It can be clearly seen from this inequality that the larger the number of examples (the
larger m), the smaller the value of the complexity-penalty becomes, and the difference
between the two hypotheses diminishes.

For the proof of the SRM theorem, we’ll use the following claim :



4.7. THEORETICAL MODEL 17

Claim 4.2 The probability that the observed error of h (ε̂(h)) will diverge from the actual
error of h (ε(h)) by more than some threshold, λ, is bounded from above:

Prob
[
|ε(h)− ε̂(h)| ≥ λ

]
≤ 2e−λ

2m (4.6)

Proof: This is obtained by simple application of the Chernoff Inequality. �

Proof of SRM Theorem

The proof consists of two stages. First, we’ll bound the error of the hypothesis in any
given class Hi. Second, we’ll bound the error across the classes Hi.

First stage : Bounding the error in Hi

Let gi be the hypothesis with the lowest observed error in Hi:

gi = arg min
h∈Hi

{
ε̂(h)

}
We want to estimate the probability of difference between the actual error and the

observed error of gi:

Prob
[
|ε(gi)− ε̂(gi)| ≥ λi

]
(we use λi, because it will depend on the complexity-level i).

We cannot use Claim 4.2 directly to bound this probability, because gi is determined
according to the given sample set (and in Claim 4.2 the probability is computed over all
the possible sample sets).

However, we can bound this probability P by the probability that any hypothesis in
Hi will have the difference between the actual error and observed error larger than λi:

P ≤ Prob
[
∃h ∈ Hi | |ε(h)− ε̂(h)| ≥ λi

]
.

By applying the inequality of Claim 4.2 we obtain:

Prob
[
∃h ∈ Hi | |ε(h)− ε̂(h)| ≥ λi

]
≤ |Hi| · 2e−λ

2
im.

Recall that we assumed for simplicity that |Hi| = 2i−1, so we get :

Prob
[
∃h ∈ Hi | |ε(h)− ε̂(h)| ≥ λi

]
≤ 2i · 2e−λ2im. (4.7)

Let’s define this upper bound (the probability of error for any hypothesis in Hi) as δi ,
i.e.:

δi = 2i−1 · 2e−λ2im. (4.8)



18 Lecture 4: November 3

Solving for λi we get:

λ2
im = ln

(
2i

δi

)
,

λi =

√
i · ln(2) + ln(1/δi)

m
. (4.9)

If we set the upper bound δi for each class Hi to δi = δ
2i

(i.e., splitting the confidence
level δ between the different classes), then we get δ =

∑
i δi and thus we can use the union

bound to get :

Prob
[
∀i ∀h ∈ Hi | |ε(h)− ε̂(h)| ≤ λi

]
= 1− Prob

[
∃i ∃h ∈ Hi | |ε(h)− ε̂(h)| ≥ λi

]
≥ 1−

∑
i

δi = 1− δ (4.10)

Therefore, with probability of at least 1− δ,

|ε(h)− ε̂(h)| ≤ λi (4.11)

for any hypothesis h in ∪Hi.

In this case λi is as follows:

λi =

√
i · ln(2) + ln(2i/δ)

m
=

√
2i · ln(2) + ln(1/δ)

m
(4.12)

Second stage : Bounding the error across Hi

In the previous stage, we’ve proved that with probability of at least 1−δ, for any hypothesis
h in ∪Hi,

|ε(h)− ε̂(h)| ≤ λi

where λi depends on the complexity level i of h.
Among other hypotheses, this is also true for h∗ and g∗, which leads to the following:

ε̂(h∗) ≤ ε(h∗) + λi (4.13)

ε(g∗)− λj ≤ ε̂(g∗) (4.14)

where,



4.8. CONCENTRATION BOUNDS 19

• i = d(h∗), i.e., i is the complexity level of h∗.

• j = d(g∗), i.e., j is the complexity level of g∗.

Let’s define Pi, Pj as the SRM complexity-penalties for h∗ and g∗, respectively. There-
fore, from the definition of the SRM model we get :

ε̂(g∗) + Pj ≤ ε̂(h∗) + Pi (4.15)

(otherwise the SRM model would not have chosen g∗).

From the three inequalities (4.13), (4.14) and (4.15) we get:

ε(g∗)− λj + Pj ≤ ε(h∗) + λi + Pi (4.16)

and therefore,
ε(g∗) ≤ ε(h∗) + λi + Pi + λj − Pj . (4.17)

Now, from the definition of the penalty-value for complexity-level j we get :

Pj =

√
(2j + 1) ln(2) + ln(1/δ)

m
= λj (4.18)

Hence the penalty is greater than the actual divergence with probability of at least 1− δ.
Now we can return to inequality (4.17) and get from (4.18):

ε(g∗) ≤ ε(h∗) + λi + Pi + (λj − Pj) = ε(h∗) + 2 · Pi (4.19)

which proves the SRM theorem.

4.8 Concentration bounds

Here are a few simple concentration bounds from probability theory.

Markov Inequality

Let X be a non-negative random variable (r.v.) and E[X] the expected value (mean) of X,
then:

Pr[X ≥ α] ≤ E[x]

α



20 Lecture 4: November 3

4.8.1 Chebyshev Inequality

Suppose that X is arbitrary with expectation E[X] = η and variance V ar(X), then:

Pr[|x− η| ≥ β] ≤ V ar(x)

β2

4.8.2 Chernoff Inequality

Let the sequence of random variables X1, . . . , Xn where Xi ∈ {0, 1} be independent identi-
cally distributed (i.i.d.), and Pr[Xi = 1] = p, then:

Pr[|
n∑
i=1

Xi

n
− p| ≥ λ] ≤ 2e−2λ2n

The last inequality is especially interesting, since it gives us a tool to argue “how fast”
the “observed mean” would converge to the “true mean”. It can be viewed as a “quantitative
form of the Law of Large Numbers.


