
Introduction to Machine Learning Fall Semester, 2013

Lecture 5: November 10
Lecturer: Yishay Mansour Scribe: ym

5.1 Introduction - Online Learning Model

Imagine a robot that needs to classify oranges (objects) as “export” (high-quality) or “local-
market” (low-quality). We want to do this by letting it work and classify oranges as they
arrive (online). After making each of its decisions, an expert (i.e., an experienced worker)
provides it with the“correct”classification so that if it makes mistakes it will be able to modify
its prediction method. One hopes that the robot will converge to a “good” classification
method.

In this lecture we study the online learning protocol.

Online model: The time steps are divided to stages. At time t the following occur:

1. The algorithm receives an unlabeled example xt.

2. The algorithm predicts a classification bt for xt. The prediction function ht in stage t
is called “current hypothesis”.

3. The algorithm is then told the correct answer, c∗(x) ∈ {−1,+1}.

In the online model, the number of time steps are usually unbounded.

Note that the online model is adversarial, i.e., we assume that the provided input is
selected in the worst possible way for the learning algorithm. For this reason we do not
assume any stochastic assumption regarding how the inputs are generated.

We will call ht (which is used to perform step (2) to generate the prediction), the algo-
rithm’s “current hypothesis” (sometimes also referred to as “concept”).

A mistake is an incorrect prediction, namely c∗(xt) 6= bt. (Recall that bt = ht(xt).)

The goal is to make a (small) bounded number of mistakes, which is independent of the
number of predictions. If we achieve our goal, and had already made the maximum number of
mistakes, then from this point onwards our hypothesis will classify all observations correctly
(otherwise, the adversary can cause the algorithm more mistakes than the bound). Similarly,
the online algorithm will not cycle through hypotheses (otherwise the adversary would be
able to force an infinite number of errors).

1



2 Lecture 5: November 10

Figure 5.1: A linear separator example

5.2 Learning Linear Separators

We will consider the examples as being from {0, 1}n or from Rn (the algorithm will not be
sensitive to the difference). In the realizable case, the goal is to find w0 (a threshold) and ~w
(a weights vector) defining a hyperplane ~w ·~x = w0 (the notation ‘·’ refers to the dot product
of two vectors, i.e., ~w · ~x =

∑n
i=1wixi) such that all positive examples are on one side and

all negative examples are on the other. I.e., ~w · ~x ≥ w0 for positive ~x’s and ~w · ~x < w0 for
negative ~x’s.

For simplicity, we use a threshold w0 = 0, so we are looking at learning functions like:∑n
i=1wixi ≥ 0. (We can simulate a nonzero threshold by adding a “dummy” attribute x0

that is always −1, and the weight assign to it would be w0.)

We begin by discussing the Perceptron algorithm, an online algorithm for learning linear
separators, and one of the oldest algorithms used in machine learning (by Rosenblatt from
1957).

5.3 The Perceptron Algorithm

The main idea of this algorithm is that as long as we do not make a mistake, we remain with
the same separator. When we do make a mistake - we move the separator towards it.

We scale all examples x to have Euclidean length 1 (i.e. ‖x‖2 = 1), since this doesn’t



5.3. THE PERCEPTRON ALGORITHM 3

affect which side of the plane they are on (given our assumption that w0 = 0).

The Perceptron Algorithm:

1. Start with the all-zeroes weight vector w1 = 0, and initialize t to 1.

2. Given example xt, predict positive iff wt · xt ≥ 0.

3. On a mistake, update as follows: wt+1 ← wt + c∗(x)xt, namely,

• Mistake on positive (i.e., c∗(x) = 1): wt+1 ← wt + xt.

• Mistake on negative (i.e., c∗(x) = −1): wt+1 ← wt − xt.

The intuition: Suppose we encounter x, (we denote xt as simply x for simplicity). If we
make a mistake classifying x, then after the update it follows that

wt+1 · x = (wt + c∗(x)x) · x = wt · x + c∗(x)x · x = wt · x + c∗(x).

This implies that if the example was positive c∗(x) = +1 we increase the dot product (wt ·x)
and if the example was negative c∗(x) = −1 we decrease the dot product (wt · x). So the
update is always in the “right” direction.

Theorem 5.1 Let S be a sequence of labeled examples consistent with a linear threshold
function w∗ ·x ≥ 0, where w∗ is a unit-length vector. Then the number of mistakes M on S
made by the online Perceptron algorithm is at most (1/γ)2, where

γ = min
x∈S

|w∗ · x|
||x||

.

(I.e., if we scale examples to have Euclidean length 1, then γ is the minimum distance of
any example to the plane w∗ · x = 0.)

The parameter “γ” is often called the “margin” of w∗ (or more formally, the L2 margin
because we are scaling by the L2 lengths of the target and examples). The margin γ represents
the minimal distance of each example x from w∗, after normalizing both w∗ and the examples.
Another way to view the quantity w∗·x

||x|| is that it is the cosine of the angle between x and

w∗, so we will also use cos(w∗,x) for it.

Proof of Theorem 5.1. We are going to consider two quantities: wt ·w∗ and ||wt||. We will
show a claim regarding the change in each of the two quantities. We assume, without loss
of generality, that we always make mistakes, since if we do not make a mistake we do not
change the weights.
Claim 1: wt+1 ·w∗ ≥ wt ·w∗ + γ. That is, every time we make a mistake, the dot-product
of our weight vector with the target increases by at least γ. (Note that since w1 · w∗ = 0,
this implies that wt+1 ·w∗ ≥ 0.



4 Lecture 5: November 10

Proof: if x was a positive example, then we get wt+1 · w∗ = (wt + x) · w∗ =
wt ·w∗+x ·w∗ ≥ wt ·w∗+ γ (by definition of γ and since ||x|| = 1). Similarly, if
x was a negative example, we get (wt− x) ·w∗ = wt ·w∗− x ·w∗ ≥ wt ·w∗ + γ.
(Recall that x ·w∗ < 0 when x is a negative example.)

Claim 2: ||wt+1||2 ≤ ||wt||2 + 1. That is, every time we make a mistake, the length squared
of our weight vector increases by at most 1.

Proof: if x was a positive example, we get ||wt +x||2 = ||wt||2 + 2wt ·x+ ||x||2.
This is less than ||wt||2 + 1 because wt · x is negative (remember, we made a
mistake on x). Same thing (flipping signs) if x was negative but we predicted
positive.

Claim 1 implies that after M mistakes, wM+1 · w∗ ≥ γM . On the other hand, Claim 2
implies that after M mistakes, ||wM+1|| ≤

√
M . Now, all we need to do is use the fact that

wt ·w∗ ≤ ||wt||: Since w∗ is a unit vector, then a vector maximizing the dot product wt ·w∗
would be wt

||wt|| , which entails that

wt ·w∗ ≤ wt ·
wt

||wt||
=
||wt||2

||wt||
= ||wt||.

Therfore, we get
γM ≤ wM+1 ·w∗ ≤ ||wM+1|| ≤

√
M

and thus M ≤ 1
γ2

. �

5.3.1 Perceptron - Unrealizable case

What if there is no perfect separator (w∗)? What if only most of the data is separable
by a large margin (as seen on Figure 5.2), or what if w∗ is not perfect? We need in this case
to reconsider Claim 1. Claim 1 said that we make “γ amount of progress” on every mistake.
Now it’s possible there will be mistakes where we make very little progress, or even negative
progress. One thing we can do is bound the total number of mistakes we make in terms of
the total distance we would have to move the points to make them actually separable by
margin γ. Let us call that TDγ, where TDγ =

∑T
t=1 max{0, γ − c∗(xt)(xt ·w∗)}. Similar to

Claim 1, we get that after M mistakes, wM+1 ·w∗ ≥ γM −TDγ. So, combining with Claim
2, we get that

√
M ≥ γM − TDγ, which gives an upper bound on M .

To compute the upper bound on M we can solve the quadratic equation, but a simple
upper bound is M ≤ 1

γ2
+ ( 2

γ
)TDγ. The quantity 1

γ
TDγ is called the total hinge-loss of

w∗. The hinge loss of a point x with respect to w∗ can be define as max{0, 1 − y}, where

y = c∗(x)·x·w∗
γ

and c∗(x) is the classification of x. The expression for the hinge loss is equivalent

to 1
γ

max{0, γ − c∗(x)x · w∗}. The hinge loss is a loss function that begins paying linearly



5.3. THE PERCEPTRON ALGORITHM 5

Figure 5.2: A case in which no perfect separator exists

as it approaches the hyperplane after the margin parameter γ (see Figure 5.3). Note that
the maximum contribution of an error is 1 + γ, since the examples are normalized to a unit
length.

Figure 5.3: Illustrating hinge loss

This is partially good news: we cannot necessarily say that we are making only a num-
ber of mistakes proportional to that which w∗ does (in fact, the problem of finding an
approximately-optimal separator is NP-hard), but we can say we are doing well in terms of
the “total distance” parameter or the hinge loss of w∗.



6 Lecture 5: November 10

5.4 WINNOW2

We now describe an alternative algorithm for learning hyperplanes. Here it will be more
convenient to assume that x ∈ {0, 1}n rather than x ∈ [0, 1]n, but the algorithm extends to
the latter case as well. Also we will discuss the case where the coefficients are only positive.

Suppose we had a separation between the positive examples and the negative examples
by the hyperplane (µ1, . . . , µn) where

n∑
i=1

µi · xi ≥ θ ⇔ c∗(x) = 1

n∑
i=1

µi · xi ≤ θ − δ ⇔ c∗(x) = 0

(δ will influence the algorithm’s mistake complexity.)
We initialize the weight vector to 1, i.e., wi = 1. As before, we update only when the

algorithm makes an error. WINNOW has a parameter β > 1. We distinguish between
two error types. For False-Negative errors, we multiply the weights by the factor β, and call
this a promotion step. For False-Positive errors, we divide the weights by β, and call this a
demotion step). We use β = 1 + δ

2
to derive our bounds.

The algorithm’s response to mistakes:

Name Update Scheme target prediction
Demotion ∀xi = 1 set wi = wi/β 0 1
Promotion ∀xi = 1 set wi = β · wi 1 0

Figure 5.4: The update scheme used by winnow2

Theorem 5.2 If there exists a hyperplane (µ1, . . . , µn) with a separation of 0 < δ ≤ 1, and
if we run winnow2 with β = 1 + δ

2
and θ ≥ 1, then the number of mistakes is bounded

by:

O(
1

δ2
· n
θ

+ (
1

δ
+

1 · lnθ
δ2

) ·
n∑
i=1

µi)

In order to prove the theorem we first prove three lemmas. We start by distinguishing
between the mistakes according to their cause. Let u – the number of promotion steps, and
v – the number of demotion steps.



5.4. WINNOW2 7

The following lemma shows that the number of demotion steps cannot be much larger
than the number of promotion steps.

Lemma 5.3 For any u and v,

v ≤ β

β − 1
· n
θ

+ β · u

Proof: Again consider
∑n

i=1wi. A promotion step increases the sum
∑
wi by at most

(β − 1) · θ. A demotion step decreases the sum
∑
wi by at least (1− 1

β
) · θ.

Combining the two,

0 ≤
n∑
i=1

wi ≤ n + (β − 1) · θ · u − v · β − 1

β
· θ

But since the weights are never negative, we have:

n + (β − 1) · θ · u − v · β − 1

β
· θ ≥ 0

Thus,

v · β − 1

β
≤ n

θ
+ u · (β − 1),

which implies that:

v ≤ β

β − 1
· n
θ

+ β · u.

�

The following lemma shows that any individual weight can not be too large.

Lemma 5.4 For all i, wi ≤ β · θ.

Proof: Since θ ≥ 1 and β > 1, all the weights are initially 1 ≤ β · θ. For any j, the
value of wj is only promoted during a trial in which xj = 1 and

∑n
i=1wi · xi ≤ θ. These

conditions can only occur if wj ≤ θ immediately prior to the promotion. Thus wj ≤ β · θ
after the promotion. �

Lemma 5.5 After u promotion steps and v demotion steps: there exists an i for which

logwi ≥
θ · u− (θ − δ) · v∑n

i=1 µi
· logβ



8 Lecture 5: November 10

Proof: We consider the function

Φ = Πn
i=1w

µi
i

Promotion Step
∑n

i=1 µi · xi ≥ θ. Let w′i be the weights after the promotion step. For
each xi = 1, w′i = wi · β.

Φ′ = Φ · Πn
i=1(β

xi)µi = Φ · β
∑n

i=1 xiµi ≥ Φ · βθ

Demotion Step
∑n

i=1 µi · xi < θ− δ. Let w′i be the weights after the demotion step. For
each xi = 1, w′i = wi

β
.

Φ′ = Φ · Πn
i=1(

1

βxi
)µi = Φ · β−

∑n
i=1 xiµi ≤ Φ · β−(θ−δ)

Initially,
∏n

i=1w
µi
i = 1. After u promotion steps and v demotion steps, we have

From the above facts we can conclude that :

n∏
i=1

wµii ≥ βθ·u · β−(θ−δ)·v

We can take the log of both sides

n∑
i=1

µilogwi ≥ [u− (θ − δ) · v] logβ

Which means that there exists a i for which:

logwi ≥
[θ · u− (θ − δ) · v]∑n

i=1 µi
· logβ

�
Proof of theorem 2.5: From Lemmas 5.3 – 5.5 we have:

θ · u− (θ − δ) · v∑
µi

· logβ ≤ log(β · θ) = logβ + logθ.

Recall that the total number of mistakes is equal to u+v.
Since β > 1 and µi ≥ 0 we get:

θ · u− (θ − δ) · v ≤ (1 +
logθ

logβ
) ·

n∑
i=1

µi



5.5. WINNOW VERSUS PERCEPTRON: 9

and by using Lemma 5.3 it is sufficient to gurantee that,

θ · u− (θ − δ) · ( β

β − 1
· n
θ

+ β · u) ≤ (1 +
logθ

logβ
) ·

n∑
i=1

µi.

We can now use the fact that β = 1 + δ
2
. The above requirement can be reduced to,

u ≤ (
1

δ2
+

2 · logθ
δ2

) ·
n∑
i=1

µi + 2 · n
θ
· θ − δ
δ2
· (1 +

δ

2
)

From Lemma 5.5 we have that,

u + v ≤ u +
β

β − 1
· n

Θ
+ β · u = (2 +

δ

2
) + (

1 + δ
2

δ
2

) · n
θ

Which concludes the proof.

5.5 Winnow versus Perceptron:

One can generalize the basic analysis we did for Winnow to the case of learning linear
separators; the guarantee depends on the L1, L∞ margin of the target. In particular, if the
target vector w∗ is a linear separator such that w∗ · x > c on positives and w∗ · x < c− α on
negatives, then the mistake bound of Winnow is:

O

((
L1(w

∗)L∞(X)

α

)2

log(n)

)
,

And the mistake bound of Perceptron is:

O

((
L2(w

∗)L2(X)

α

)2
)
.

The quantity γ = α
L1(w∗)L∞(X)

is called the “L1, L∞” margin of the separator, and our bound

is O( 1
γ2
· log(n)). On the other hand, the Perceptron algorithm has a mistake bound of O( 1

γ2
)

where γ = α
L2(w∗)L2(X)

(this called the “L2, L2” margin of the separator).

One thing that is lost using Winnow, is obviously the log(n), but the norms are also
different.

Intuitively, if n is large but most features are irrelevant (i.e., target is sparse but examples
are dense), the Winnow is better because adding irrelevant features increases L2(X) but not
L∞(X). On the other hand, if the target is dense and examples are sparse, then Perceptron
is better.


