
Introduction to Machine Learning Fall Semester, 2013

Lecture 6: November 17
Lecturer: Lior Wolf Scribe: ym

6.1 Kernels for SVM classifiers

Today we continue with Support Vector Machine (SVM) and introduce the idea of e kernel.
Using a kernel we will be able to have non-linear classifiers, but maintain the computational
efficiency.

We will cover today the following topics:

• Following discussions from last class

– How many support vectors are there anyhow?

– Positive definite matrices

• Support Vector machine (SVM) classifier and Kernels

– The kernel trick

– Which kernels to use

– Constructing kernels

– SVD and kernel SVD

6.2 Review some topics from last class

6.2.1 Number of support vectors

When the data is linearly separable, the set of support vectors is at most d + 1. (We can
have degenerate cases, where many points are at the same distance, but in most “real” cases
this will not happen.) However, you might have less than d+1 support vectors. (See Figures
6.2 and 6.1 for an example on the plane.)

To see why having d+ 1 support vectors is sufficient, consider the SVM convex program,

min
w∈Rd,b∈R

1

2
wtw

s.t. yn(wtxn + b) ≥ 1 ∀n ∈ [1, N]

1

2 Lecture 6: November 17

Figure 6.1: three support vectors Figure 6.2: Two support vectors.

The support vectors maintain the inequality as an identity. Since we have d+ 1 variables
(d for w and one for b), having d + 1 linearly independent examples will already force the
solution. Having more support vectors, means that some of them are dependent on the
others, and therefore are not “essential”. (This is not exactly a proof, since we are ignoring
the non-linear objective.)

6.2.2 Positive definite (PD) and Positive semi-definite (PSD) ma-
trices

A symmetric d × d matrix A is positive definite (alternatively, positive semi-definite) if for
any y ∈ Rd such that y 6= 0 we have ytAy > 0 (alternative, ytAy ≥ 0).

An alternative second definition is that a symmetric matrix A is positive definite if there
is a matrix P such that A = PP t and det(P) 6= 0. (Alternatively, a matrix A is positive
semi-definite if we drop the requirement that det(P) 6= 0.)

If there is such a matrix P , then ytAy = ytPP ty = ‖P ty‖2 ≥ 0, and if det(P) 6= 0
then ‖P ty‖2 > 0.

The other direction is not shown here.
There are non-symmetric matrix A, that can have the property that for any y we have

ytAy > 0, for example A =

(
1 1
−1 1

)
. One can verify that (y1, y2)

tA(y1, y2) = y21 + y22 >

0. The test for a non-symmetric matrix A whether for any y we have ytAy > 0 is by
testing if A+At is PSD. Note that A+At is symmetric. Also, for any y, we have ytAy =
(ytAy)t = ytAty, since it is a scalar. Therefore, 2ytAy = ytAy+ ytAty = yt(A+At)y, and
A has the property iff A+ At is PSD.

An alternative third definition is based on the eigenvalues of a positive definite matrix.
Recall that a d× d symmetric real-valued matrix A has d eigenvalues λi and eigenvectors xi

6.2. REVIEW SOME TOPICS FROM LAST CLASS 3

such that
Axi = λxi

and
[x1 · · · xd]tA[x1 · · ·xd] = diag(λ1, . . . , λd)

1. If λi > 0 for i ∈ [1, d] then A is positive definite.

2. If λi ≥ 0 for i ∈ [1, d] then A is positive semi-definite.

Let U = [x1 · · ·xd] where xi are orthonormal eigenvectors. Since UU t = I for any y ∈ Rd

we have

y = UU ty = U

 xt1y
...
xtdy

 =
d∑
i=1

αixi

Then

ytAy = yt(
d∑
i=1

αiAxi) = yt(
d∑
i=1

αiλixi) =< (
d∑
i=1

αixi), (
d∑
i=1

αiλixi) >=
d∑
i=1

α2
iλi

The last expression is strictly positive if λi > 0 and non-negative if λi ≥ 0. This shows
that if the eigenvalues are positive (non-negative) the matrix A is positive definite (positive
semi-definite).

Similarly, for the other direction. If we assume that for any y we have
∑d

i=1 α
2
iλi positive

(non-negative), then by selecting y = xi (setting αi = 1) we show that λi > 0 (λi ≥ 0).

6.2.3 The dual SVM formulation and PSD

Recall that the dual formulation is

min
α

αt


y1y1x

t
1x1 y1y2x

t
1x2 · · · y1yNx

t
1xN

y2y1x
t
2x1 y2y2x

t
2x2 · · · y2yNx

t
2xN

...
...

...
...

yNy1x
t
1xN yNy2x

t
Nx2 · · · yNyNx

t
NxN


︸ ︷︷ ︸

M

α− 1tα

s.t. ytα = 0

0 ≤ α ≤ C

We can write the matrix M as PP t where P t = [y1x1 · · · yNxN]. For this reason the matrix
M is positive semi-definite. This guarantees that the optimization would have a unique local
minima (which is the global minima) and that the computation can be done efficiently.

4 Lecture 6: November 17

Figure 6.3: An interval of blue between two
red areas

Figure 6.4: Lifting the interval to 2-D.

Figure 6.5: mapping from a circle to 3D

Figure 6.6: circle in 2-D.

6.2.4 Non-linear SVM

The basic SVM that we presented has a liner decision boundary. For example, in 1-dimension
(d = 1) the decision boundary is simply a threshold. Consider Figure 6.3. Any threshold
that we would select would have a high error rate. For this reason, introducing slack variables
and using hinge loss, would not solve the problem. At the end, we will be using a threshold
on the line, and any threshold is bad. An interesting solution is to map the points to a higher
dimension, in this case 2-D. We can map each point x to (x, x2), namely map the line to a
parabola. In figure 6.4 we show this for our example. Now there is a linear separator that
can separate the blues from the reds.

In general, we can always add enough dimensions such that the points are linearly
separable, but in some extreme cases this might require a number of dimensions which is
proportional to the number of points. In such a case the linear separator is very likely to
overfit, unless it is done carefully as in the case of a Gaussian kernel.

Another example is in figures 6.6 and 6.5. In 2D there is a circle which perfectly classifies
the points. Namely, for each (x1, x2) the decision is based on x21 + x22 ≤ C. We can get
around this problem is a few ways. One solution is to move to polar coordinates, namely,
map (x1, x2) to (r, θ), where r =

√
x21 + x22 and tan(θ) = x2/x1.

An alternative solution, is to map (x1, x2) to (x21, x
2
2). This will solve our problem, but

would seems a rather adhoc solution. A better solution, which could handle any quadratic

6.2. REVIEW SOME TOPICS FROM LAST CLASS 5

mapping, is to map (x1, x2) to (1, x1, x2, x1, x2, x
2
1, x

2
2) and then we can implement any

quadratic function.
We can now discuss a general mapping of x to φ(x). Let us consider the basic primal

optimization.

min
w,b

1

2
wtw

s.t. yn(wtφ(xn) + b) ≥ 1 ∀n ∈ [1, N]

The first question is what is the dimension of the weights w? Note that this dimension
depends on the dimension of φ(·). Since we would like to handle arbitrary large dimensions,
this might be a computational problem. However, the rest of the math is not influenced. If
we have a very large feature vector φ(·) then the computational problem is two folds, first the
inner products become an expensive operation, and second we need to compute and store a
very large weight vector. Let us consider the dual program.

min
α

αt


y1y1φ(x1)

tφ(x1) y1y2φ(x1)
tφ(x2) · · · y1yNφ(x1)

tφ(xN)
y2y1φ(x2)

tφ(x1) y2y2φ(x2)
tφ(x2) · · · y2yNφ(x2)

tφ(xN)
...

...
...

...
yNy1φ(x1)

tφ(xN) yNy2φ(xN)tφ(x2) · · · yNyNφ(xN)tφ(xN)


︸ ︷︷ ︸

M

α− 1tα

s.t. ytα = 0

0 ≤ α ≤ C

The good news here is that the new features φ(·) do not influence the constraint, and in
the matrix M they appear only as inner product of two vectors φ(·). Let us consider the
hypothesis h that we build. Recall that w =

∑m
i=1 αiyiφ(xi) and then

h(x) = wtφ(x) + b =
m∑
i=1

αiyiφ(xi)
tφ(x) + b

again, we need to consider only inner products of φ(·).
Finally, we compute b by considering any support vector (x, y) and setting

b = y −
m∑
i=1

αiyiφ(xi)
tφ(x)

again, we need to consider only inner products of φ(·).
This suggests that if we can compute the inner product of feature vectors φ(·) efficiently,

we can perform the entire mapping efficiently. This is the entire idea behind the kernel trick.

6 Lecture 6: November 17

Rather than computing the inner product explicitly, we can compute it implicitly. For a
mapping φ(·) we define a kernel K such that

K(x′, x′′) = φ(x′)tφ(x′′)

then the hypothesis becomes

h(x) =
m∑
i=1

αiyiK(xi, x) + b

Also in the matrix M we can replace any φ(xi)
tφ(xj) by K(xi, xj).

Going back to example of figure 6.4. We can set φ(x) = (x, x2) and then

K(x, y) =< φ(x), φ(y) >=< (x, x2), (y, y2) >= xy + x2y2

In this example we did not gain much by not doing the inner product explicitly using φ.
However, in higher dimensions there will be a significant benefit.

For the quadratic polynomial kernel, we can first describe the kernel itself, and only then
show that indeed they are an inner product of some φ. The quadratic polynomial K2 is,

K2(x, x
′) = (1 + xtx′)2

clearly this kernel can be computed in time O(d) for x, x′ ∈ Rd. We still need to show that
there are functions φ such that K(x, x′) = φ(x)tφ(x′). We can compute the kernel explicitly

K2(x, x
′) = (1 + xtx′)2 = (1 + x1x

′
1 + x2x

′
2)

2

= 1 + x1x
′
1 + x2x

′
2 + x21(x

′
1)

2 + x2(x
′
2)

2 + 2x1x2x
′
1x
′
2 + 2x1x

′
1 + 2x2x

′
2

=



1√
2x1√
2x2
x21
x22√

2x1x2

 ·


1√
2x′1√
2x′2
x′21
x′22√
2x′1x

′
2


= φ(x)tφ(x′)

In a similar what this can be extended to x ∈ Rd. The main benefit is that the computation
is O(d) while the length of φ is O(d2).

There are a few classes of popular kernels. The first is the linear kernel which is the basic
SVM. We have the degree r kernel Kr, where,

Kr(x, x
′) = (1 + xtx′)r

6.2. REVIEW SOME TOPICS FROM LAST CLASS 7

Figure 6.7: Gaussian kernel with large σ Figure 6.8: Gaussian kernel with small σ.

The degree r kernel uses a feature vector of length O(dr) and the computation is only O(d).
The Gaussian kernel Kg has a parameter σ and

Kg(x, x
′) = e−‖x−x

′‖2/(2σ2)

The feature vector of a Gaussian kernel is of infinite size. Still the computation of a Gaussian
kernel is O(d).

To better understand the role of a kernel we can define a kernel matrix K where Ki,j =
φ(xi)

tφ(xj). Note that this definition depends on the points x1, . . . xn and therefore we denote
the kernel by K[x1, . . . , xN].

With a Gaussian kernel we can select the points xi such that K(xi, xj) ≤ ε for i 6= j, and

for sufficiently small ε, the matrix K is full rank. This implies that the feature vector grows
with the number of points, and hence infinite.

To see the connection between the rank of K and the dimension of φ(x) observe

the following. Assume that φ(x) ∈ Rd, i.e., has dimension d. Recall that K[i, j] =<
φ(xi)

tφ(xj) >=
∑d

r=1 φr(xi)φr(xj), where φr(x) is the r-dimension of φ(x). Then we can

write K as a sum of d matrices Mr, where Mr[i, j] = φr(xi)φr(xj). The rank of each
matrix Mr is one, since row j is equal to the first row times φr(xj)/φr(x1). This implies

that the rank of K is at most d, the dimension of φ(x). Therefore, if the dimension of K
is unbounded, then the dimension of φ(x) is unbounded.

The Gaussian kernels are very flexible. Many times they are parameterized by γ = 1/(2σ)
rather than σ. For small values of γ the decision line are elliptic (see figure 6.7). For large

8 Lecture 6: November 17

values of γ they are essentially a nearest-neighbor since the influence falls exponentially with
the distance (see figure 6.8).

6.2.5 Proper Kernels

We now define Proper kernels which require that

1. Symmetric: K(xi, xj) = K(xj, xi).

2. Positive semi-definite kernel. For any N and any x1, . . . , xN we have that for any y it

holds that ytKy ≥ 0, where Ki,j = K(xi, xj).

One can slightly relax the second condition. In practice we can run the SVM even if the

matrix K is not positive semi-definite. This implies that we are not guaranteed that a local
optimum is a global one, and we are not guaranteed that the algorithm would even converge.
However, we can always evaluate the solution it finds.

We can compose proper kernels from existing ones. Here are two simple examples:

1. Addition K3(x, x
′) = K1(x, x

′) + K2(x, x
′). If φ1 and φ2 are the feature vectors of K1

and K2, we can create φ3(x) = [φ1(x);φ2(x)], namely concatenating the two feature
vectors.

2. Multiplication: K3(x, x
′) = K1(x, x

′) ∗K2(x, x
′). If φ1 and φ2 are the feature vectors

of K1 and K2 we can do the following:

K3(x, x
′) = (φ1(x)tφ1(x))(φ2(x

′)tφ2(x))

= tr(φ1(x)tφ1(x
′)φ2(x

′)tφ2(x))

= tr(φ(x2)φ1(x)tφ1(x
′)φ2(x

′)t)

=< V EC(φ(x2)φ1(x)t), V EC(φ1(x
′)φ2(x

′)t) >,

where we used the fact that tr(ABCD) = tr(DABC) and V EC(·) transforms a matrix
to a vector.

Suppose we want to do Nearest Neighbor in feature space, how can we use kernels. Recall
that

‖a− b‖2 = (a− b)t(a− b) = ata− 2atb+ btb

Similarly, in feature space we have

‖φ(a)− φ(b)‖2 = K(a, a)− 2K(a, b) +K(b, b)

We can create a kernel from almost any proper distance metric. One way of doing it is
using the generalized Gaussian Kernels, where

K(h1, h2) = e−D
2(h1,h2)/β

There are a few ways of setting the distance D(h1, h2):

6.2. REVIEW SOME TOPICS FROM LAST CLASS 9

• L1 distance: D(h1, h2) =
∑d

i=1 |h1(i)− h2(i)|

• L2 distance: D2(h1, h2) =
∑d

i=1(h1(i)− h2(i))2

• L∞ distance: D(h1, h2) = maxdi=1 |h1(i)− h2(i)|

• χ2 distance: D2(h1, h2) =
∑d

i=1
(h1(i)−h2(i))2
h1(i)+h2(i)

which is very applicable to histograms.

• Hellinger distance: D2(h1, h2) =
∑d

i=1(
√
h1(i) −

√
h2(i))

2 which is very applicable to
distributions.

• Mahalanobis distance: D2(h1, h2) = (h1 − h2)tS−1(h1 − h2) which allows to learn the
metric, which is parametrizes by a positive definite matrix S.

6.2.6 Intersection kernels

For histograms we can apply the intersection kernel which is defined as follows.

K(h1, h2) =
d∑
i=1

min(h1(i), h2(i))

when the K value is small the histograms are different and when the K is large the histograms
are similar. (Note that implicitly we assume that both histograms have the same number of
elements, otherwise we would need to normalize for size.)

We can show that the kernel is positive definite. We will show it for the case where the
entries are integers and there is a maximum value `. We can encode each entry of h(i) in
unary. For example, assume ` = 7, then

min(3, 5) =< (1, 1, 1, 0, 0, 0, 0), (1, 1, 1, 1, 1, 0, 0) >= 3

For the intersection kernel we can make the predictions faster, depending logarithmically
on the number of support vectors s. Let x1...xs be the support vectors, with coordinates xj,i,
i = 1..d. The decision function is

h(x) =
s∑
j=1

αj

(
d∑
i=1

min(xi, xj,i)

)
+ b

=
d∑
i=1

(
s∑
j=1

αj min(xi, xj,i)

)
+ b

=
d∑
i=1

hi(x) + b

10 Lecture 6: November 17

where hi(x) =
∑s

j=1 αj min(xi, xj,i) =
∑

xj,i<xi
αjxj,i +

∑
xj,i≥xi αjxi.

We can precompute the following for each coordinate i ∈ [1, d]. First, sort the points xj,i,
for j ∈ [1, s], and let the sorted values be z1 ≤ z2 ≤ · · · ≤ zs. Then, for each one of the s+ 1
prefixes compute both β1,` =

∑`
j=1 αjzj and β2,` =

∑s
j=`+1 αj. When we need to compute

hi(xi), we simply test how many values xj,i (i.e. zj) are smaller than xi. We can do this in
time O(log s) using binary search. Suppose that the number of smaller values is `. We can
use the precomputed values and return hi(xi) = β1,` + β2,`xi.

6.3 SVD

see slides.

