
Introduction to Machine Learning Fall Semester, 2013

Lecture 8: December 8
Lecturer: Yishay Mansour Scribe: ym

8.1 Weak and Strong Learners

In the PAC model there is a distribution D on a domain X. Random examples < x, c∗(x) >
are drawn according to the distribution D and labeled using the target function c∗ ∈ C. The
goal of the learner is to find a hypothesis h ∈ H such that error(h, c∗) ≤ ε, with probability
1− δ. This is a strong learning model, since ε and δ can be arbitrarily small.

Recall that ε is the error rate of the algorithm and 1 − δ represents the confidence.
However, suppose we have an algorithm with low error rate but also low confidence, say
confidence 50%, or alternatively an algorithm with an error rate of 49% (slightly better than
flipping a coin) but high confidence level.

Is it possible to drive those weak algorithms to be strong learners? Intuitively, it is easier
to find hypothesis that is correct only 51 percent of the time, rather than a hypothesis that
is correct 99 percent of the time.

8.1.1 Boosting the confidence (1− δ)

Suppose algorithm A returns with probability δ ≥ 1
2

a hypothesis h such that error(h, c∗) ≤ ε.
An interesting question is whether it is possible to build a PAC learning algorithm A′ (from
A)? The answer is positive.

Algorithm BoostConfidence(A):

1. Run A for k = log 2
δ

times (on fresh sample Si each time) with parameter ε′ = ε
3
.

2. Algorithm A on input Si outputs hypotheses hi, so we have hypotheses h1, . . . , hk.

3. Draw a new sample S of size m = 9
ε2

ln 4k
δ

= O(1
ε2

ln k
δ
) and for each hypothesis hi

compute its error on S, i.e., the observed error êrror(hi).

4. Return ĥ∗ = arg mini(êrror(hi(S))).

1

2 Lecture 8: December 8

Analysis of Algorithm BoostConfidence(A)

After the first stage of the algorithm, we would like at least one hypotheses hi to have error
at most ε/3. With probability at most (1

2
)k, ∀i : error(hi) >

ε
3
. Hence, with probability at

least 1− (1
2
)k, ∃i : error(hi) ≤ ε

3
.

Therefore, if we set k = log 2
δ
, then with probability 1 − δ

2
for at least one of h1, . . . , hk

we have error(hi) ≤ ε
3
. Denote by h+ this hypothesis.

Now we will show that after the second stage of the algorithm BoostConfidence(A),

with probability 1− δ
2
, outputs the hypothesis ĥ∗ (with minimum errors on S) such that,

error(ĥ∗) ≤ ε

2
+ min

i
(error(hi)) ≤ ε �

Proof: First, we use Chernoff Bound to bound the probability for “bad” event, i.e., the
difference between the empirical error of any hi and its real error is grater than ε

3
:

Pr[|êrror(hi)− error(hi)| ≥
ε

3
] ≤ 2e−(

ε
3
)2m

Second, we will bound by δ
2

the probability that such bad event will happen to any of the k
hypothesis hi using a Union Bound:

2ke−(
ε
3
)2m ≤ δ

2
�

Then, by isolating m, we will get:
1

e
ε2

9
m
≤ δ

4k

4k

δ
≤ e

ε2

9
m

ln
4k

δ
≤ ε2

9
m

9

ε2
ln

4k

δ
≤ m �

We have that for a sample of size at least m, with probability 1− δ
2
, for each of those hi:

|êrror(hi)− error(hi)| <
ε

3
thus,

error(h∗) < êrror(h∗) +
ε

3
�

From the first stage of the algorithm we already know that

êrror(h+) < error(h+) +
ε

3
<

2ε

3
�

Since êrror(h+) ≥ êrror(h∗), and we conclude that, with probability 1−δ, we have error(ĥ∗) ≤
ε. �

8.1. WEAK AND STRONG LEARNERS 3

8.1.2 Boosting the accuracy (ε)

One question we can ask: given an algorithm that outputs hypothesis with ε = 1
2
, can we

drive it to learn PAC? The answer is No, because such an algorithm will do exactly like
flipping a coin.

Definition: Weak learning

Algorithm A learn Weak-PAC a concept class C with H if:
∃γ > 0,
∀c∗ ∈ C, (target function)
∀D, (distribution)
∀δ > 1

2
,

Algorithm A outputs hypothesis h ∈ H and with probability 1−δ, such that error(h) ≤ 1
2
−γ.

Intuitively, A will guarantee an error rate of 49% instead of 1% of the PAC model. We
show, that if a concept class has a weak learning algorithm, then there is a PAC learning
algorithm for the class.

Note that running A multiple times on the same distribution D, does not work because
A might return the same hypothesis over and over again.

Example

Suppose we have the following target function c∗ (over bits) with a Uniform distribution D:

if x1 = x2 = 1 =⇒ c∗(x) = some very hard function

otherwise =⇒ c∗(x) = 0

(e.g., the hardness depends on the first and the second bits.)

We can easily achieve 87.5% accuracy by flipping a coin if x1 = x2 = 1 and otherwise
predicting zero.
The probability for the event x1 = x2 = 1 is 0.25 which gives us a total accuracy of 87.5%.
On the other hand, getting better than 87.5% accuracy is hard. For this reason we want our
weak learner to perform well with any distribution D! (In the example a natural distribution
is x1 = x2 = 1 and uniform otherwise).

Conclusion: An important requirement in weak learning model is: for all distribution.
(in the example we assumed a specific distribution)

4 Lecture 8: December 8

8.2 Three weak learners

8.2.1 Algorithm Description

Let A be a weak learning algorithm, and p the error probability of A.
Step 1: Run A with the initial distribution D1 to obtain h1 (error ≤ 1

2
− γ).

Step 2: Define a new distribution D2, such that

Sc = {x|h1(x) = c∗(x)}
Se = {x|h1(x) 6= c∗(x)}

D2(Sc) = D2(Se) =
1

2

To do so we will define D2 as follows:

D2(x) =

{
0.5
1−p ·D1(x) x ∈ Sc
0.5
p
·D1(x) x ∈ Se,

where p = D1(Se). For simplicity we assume that all the weak learners have error p = 1/2−γ.
To obtain h2 we will run A with D2.
Step 3: The distribution D3 would be defined only on examples x for which h1(x) 6= h2(x):

D3(x) =

{
D1(x)
Z

h1(x) 6= h2(x)

0 otherwise,

where Z = P [h1(x) 6= h2(x)]. To obtain h3 we will run A with D3. Our combined hypothesis
would be:

H(x) =

{
h1(x) h1(x) = h2(x)

h3(x) otherwise

Which is equivalent to H(x) = MAJ(h1(x), h2(x), h3(x)).

8.2.2 Estimation of the Error

Suppose each hypothesis hi errors with a probability of p, independently. What would be
the error of the majority of h1, h2, h3?

Error = 3p2(1− p) + p3 = 3p2 − 2p3 = p2(3− 2p)

8.3. ADAPTIVE BOOSTING - ADABOOST 5

We would like to show that this is the error probability without assuming the hypotheses
are independent. To do so we would partition the space into four subspaces:

Scc = {x|h1(x) = c∗(x) ∧ h2(x) = c∗(x)}
See = {x|h1(x) 6= c∗(x) ∧ h2(x) 6= c∗(x)}
Sec = {x|h1(x) 6= c∗(x) ∧ h2(x) = c∗(x)}
Sce = {x|h1(x) = c∗(x) ∧ h2(x) 6= c∗(x)}

Let Pcc = D1(Scc), Pee = D1(See), Pce = D1(Sce) and Pce = D1(Sce).
The error probability, with respect to the initial distribution D1, is Pee + (Pec + Pce)p.
Let us define α = D2(Sce). Therefore, from the definition of D2, in terms of D1 we get
Pce = 2(1− p)α.

Since D2(S∗e) = p, we have,

D2(See) = p− α
Pee = 2p(p− α).

From the construction of D2, since D2(Se∗) = D2(See) +D2(Sec) = 1/2, we have

D2(Sec) =
1

2
− (p− α)

Pec = 2p(
1

2
− p+ α).

Therefore the error is:
Pee + (Pec + Pce)p = 2p(p− α) + p(2p(1

2
− p+ α) + 2(1− p)α) = 3p2 − 2p3.

One can now build a recursive construction to derive an arbitrary PAC learner.

8.3 Adaptive boosting - AdaBoost

The AdaBoost algorithm is an iterative boosting algorithm that enables us to create a strong
learning algorithm from a weak learning algorithm. The general idea of this algorithm is to
maintain a distribution on the input sample, and increase the weight of the harder to classify
examples so the algorithm would focus on them.

8.3.1 Algorithm Description

Input: A set of m classified examples: S = {< x1, y1 >,< x2, y2 >, · · · , < xm, ym >} where
yi ∈ {−1, 1}.

6 Lecture 8: December 8

Definitions: Let Dt denote the distribution of weights of the examples at time t, and Dt(i)
the weight of example xi at time t.
Initialization:

D1(i) =
1

m
∀i ∈ {1, · · · ,m}

Step: At each iteration we use a classifier ht ∈ H : X 7→ {−1,+1} that minimizes the
error on the current distribution (defined as εt = PrDt [ht(x) 6= c∗(x)] where c∗ is the target
function). At time t+ 1 we update the weights in the following manner:

Dt+1(i) =
Dt(i)

Zt
·

{
e−αt yi = ht(xi)

eαt yi 6= ht(xi)

=
Dt(i)

Zt
· e−yiαtht(xi)

where Zt is a normalizing factor to keep Dt+1 a distribution and αt = 1
2

ln 1−εt
εt

.
Output: The hypothesis we return after running the algorithm for T iterations is:

H(x) = Sign

(
T∑
t=1

αtht(x)

)

An advantage using the AdaBoost algorithm is that it removes the need of knowing the
parameter γ. Another advantage is that it is easy to implement and runs efficiently.

8.3.2 Bounding the Error

Theorem 8.1 Let H be the output hypothesis of AdaBoost. Then:

êrror(H) ≤
T∏
t=1

2
√
εt(1− εt)

=
T∏
t=1

√
1− 4γ2t

≤ e−2
∑
t γ

2
t

where the last line is obtained from the inequality 1 + x ≤ ex.
Conclusion: the error drops exponentially fast in T.

Proof: The proof follows in three steps:
1. First, obtain the following expression for DT+1(i):

DT+1(i) =
D1(i)e

−yif(xi)∏
t Zt

8.3. ADAPTIVE BOOSTING - ADABOOST 7

where f(x) =
∑T

t=1 αtht(x).
Proof: Since Dt+1(i) is given by:

Dt+1(i) =
Dt(i)

Zt
e−yiαtht(xi)

we can unravel the recurrence to obtain:

DT+1(i) = D1(i)
T∏
t=1

e−yiαtht(xi)

Zt

= D1(i)
e−yi

∑T
t=1 αtht(xi)∏T
t=1 Zt

= D1(i)
e−yif(xi)∏

t Zt

�
2. Second, we bound the training error of H by the product of the normalizing factors

Zt:

êrror(H) ≤
T∏
t=1

Zt

Proof:

êrror(H) =
1

m

m∑
i=1

I(yi 6= H(xi))

=
1

m

m∑
i=1

I(yif(xi) ≤ 0)

≤ 1

m

m∑
i=1

e−yif(xi)

=
1

m

m∑
i=1

m

(
T∏
t=1

Zt

)
DT+1(i)

=

(
T∏
t=1

Zt

)
m∑
i=1

DT+1(i)

=
T∏
t=1

Zt,

where I is the indicator function. The third line follows from the observation that when
I(yif(xi) ≤ 0) = 1, then yif(xi) ≤ 0 and so e−yif(xi) ≥ 1 = I(yif(xi) ≤ 0). (Also, clearly

8 Lecture 8: December 8

when I(yif(xi) ≤ 0) = 0, then e−yif(xi) ≥ 0). The fourth line follows from step 1. The last
line is obtained from the fact that DT+1 is a probability distribution over the examples.
�

3. Now that the training error has been bounded in step 2 by the product of the normal-
izing weights Zt, the last step is to express Zt in terms of εt:

Zt = 2
√
εt(1− εt)

Proof: By definition,

Zt =
m∑
i=1

Dt(i)e
−yiαtht(xi)

=
∑

i:yi=ht(xi)

Dt(i)e
−αt +

∑
i:yi 6=ht(xi)

Dt(i)e
αt

= (1− εt)e−αt + εte
αt ,

where the last step follows from the definition of εt:∑
i:yi 6=ht(xi)

Dt(i) = εt,

Since the expression above for Zt is valid for all αt, minimizing Zt with respect to αt for each
t will produce the minimum training error êrror(H).

∂Zt
∂αt

= −(1− εt)e−αt + εte
αt = 0

Solving, we find:

αt =
1

2
ln

(
1− εt
εt

)
.

�
Using this value of αt in the expression for Zt, and then plugging that into the bound on

the training error for H, we end up with:

êrror(H) ≤
T∏
t=1

(
2
√
εt(1− εt)

)
which proves the theorem. �

