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9.1 Introduction to Linear Regression

So far, we focused on classification problems. In a classification problem, we get as an input
a multidimensional point x, which is typically a vector over the real, or another field, and
the output is a class y ∈ {0, 1}. If there are more than two classes we may want to have
y ∈ {0, 1, 2, . . . , K − 1}, where K is the number of classes. In the training data we are given
examples (xi, yi), and in the test set we are given the value of x and we need to find our best
’guess’ for the value of y. As a side note, the point x does not necessarily have to be a vector,
it could be a vector over discrete values, or it can also be a more complex structure such as
a graph or another combinatorial structure. We have seen examples for classifiers in the last
few lectures, including the perceptron, support vector machines, and finally boosting.

In some cases, we are interested in giving a more detailed classification of the data.
Particularly, in the limit we want to assign every value x a value y ∈ R, thus we can think of
it as a classification with an infinite number of classes. Based on the training data we need
to learn the relation between xi and yi, and then in the test data we can assign each point
to a value based on an extrapolation of the relation (xi, yi) to the entire domain of x. In the
most general case, we can assume that the output is also a vector, i.e., y ∈ Rk, however in
this lecture we will focus on the case where y ∈ R. One of the main techniques used for this
extrapolation is termed regression analysis, which will be the topic of this lecture.

There are many natural scenarios in which regression analysis is useful. Consider for
example the case in which we want to predict the risk of having high cholesterol based on
the weight and height of a person. In this case, physicians usually use a measure called Body
Mass Index (BMI), which is defined as BMI = weight(kg)

height2(m)
. We can measure the cholesterol

level of a number of individuals, and measure their BMI values as well (Figure 9.1). It is
clear from the figure that there is a monotonic relation between the BMI and the cholesterol
level. In linear regression, we search for a line that in some sense fits this relation as best as
we can. We will explain below what criterion we use in order to find this line.

Another example for regression is the prediction of the time a person spends in front
of the television based on the person’s age and gender. Such information could be useful
for marketing purposes. Regression can also be used to predict the preference score that a
person gives a book or a movie (e.g., in Netflix) based on some set of features describing the
person’s past choices (e.g., what is the average score the customer gave to action movies, to
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Figure 9.1: Regression line of cholesterol vs. BMI

movies starring Nicholas Cage, etc.). In another example from the world of computation,
we can try to predict the memory usage of a specific job based on some features of the job,
for example the user submitting the job, his/her group, which type of machine the user is
using (for example what the RAM of the machine is), and the time of day. There are many
more natural examples and indeed regression is a widely applied tool that has been studied
extensively.

9.2 Regression - Formal Definition

The input for a regression problem is a set of points (xi, yi). Consider for now the case where
xi, yi ∈ R. Assume there is a linear relation between x and y, so that

y ≈ ax+ b

In linear regression, we are searching for such a line, by finding a, b that minimize the
following:

(â, b̂) = arg min
a,b

∑
i

(yi − axi − b)2
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In Figure 9.2 we illustrate the optimization. The values ri = yi − âxi − b̂ are called the
residuals of the regression, and the objective of the regression is to find a, b such that the
sum of squares of the residuals is minimized.

Figure 9.2: Regression line of cholesterol vs. BMI

The regression minimization criterion can be interpreted as a likelihood maximization
criterion. We assume a model in which the relation between x and y can be described as

y = ax+ b+ ε,

where a and b are unknown constants, and ε ∼ N(0, σ2), for some unknown value σ. Note
that under this model the mean of y changes as a function of x, however the variance of y is
constant, when considered as a function of x. This assumption often breaks in practice.

Given a set of training data points (x1, y1), . . . , (xn, yn), we can write the log likelihood
of the model as

logL(a, b, σ; {(xi, yi)}) = − 1

2σ2

n∑
i=1

(yi − axi − b)2 −
n

2
log(2πσ2)

It is easy to see that the likelihood is maximized at the linear regression solution.
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9.3 The Normal Equations

So far we considered the case where x ∈ R. In general, we can assume that x ∈ Rd, thus
it is a d-dimensional vector. We will think of x as a row vector. In that case, we can still
consider the model

y = xa+ b+ ε,

where ε ∼ N(0, σ2), and a ∈ Rd is a column vector. Note that we can increase the dimension
of x by adding another variable xd+1 = 1. Thus, without loss of generality b = 0, as it is
represented by ad+1. From now on, our model of interest is

y = xa+ ε,

where ε ∼ N(0, σ2), a, x ∈ Rd. Our goal is to minimize the following:

f(a) =
n∑
i=1

(yi − xia)2.

In matrix notations, we can denote

a =

a1...
ad

 , y =

y1...
yn

 , xi = (xi1, . . . , xid), X =


−x1−
. . .
. . .
. . .
−xn−

 =

 | . . . |
X1 . . . Xd

| . . . |

 .

Then, the minimization function can be written as

f(a) = (y −Xa)t(y −Xa)

Taking the derivative we get:
f ′(a) = 2atX tX − 2ytX

Equating the derivative to zero, and after taking the transpose, we get

X tXa = X ty, (9.1)

and therefore we can solve the regression problem analytically as a set of linear equations
and get

a = (X tX)−1X ty.

The linear equations described in Equation 9.1 are called the Normal Equations. These
equations have a natural geometric interpretation. Since the equations are equivalent to the
identity X t(y − Xa) = 0, and since the residuals are defined as r = y − Xa, the Normal
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Equations require the residuals to be orthogonal to each of the columns of X. The columns
of X, denoted by X1, . . . , Xd, correspond to the variables used by the regression (e.g., BMI
in the examples above). Therefore, the solution of the linear regression is a projection of y
onto the subspace spanned by X1, . . . , Xd (see Figure 9.3). Algebraically, in the special case

where the columns of X are orthogonal (X t
iXj = 0 for i 6= j), we get ai =

Xt
i y

Xt
iXi

.

Figure 9.3: Geometric Interpretation of Linear Regression

9.4 Gradient Descent

We will take a short break from linear regression and discuss the gradient descent algorithm.
We will later show the application of the gradient descent algorithm for linear regression.

Let f(x1, . . . , xn) be a scalar-value function over n variables. The gradient of f , denoted
by ∇f is a natural generalization of the derivative of functions over one dimension, and is
defined as

∇f(x) =

(
∂f(x)

∂x1
, . . . ,

∂f(x)

∂xn

)
.

The basic idea is that the gradient gives the direction of f in each dimension. Given a
minimization problem in which we are interested in minimizing f(x1, . . . , xn), we can use the
gradient descent algorithm:
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The Gradient Decent Algorithm

Objective: Minimize f(x1, . . . , xn).

1. Start from a point x0 = (x01, . . . , x
0
n).

2. Compute the gradient ui = ∇f(xi).

3. Update xi+1 := xi − αui.

4. Return to step (2) until the algorithm converges.

Thus, the gradient descent algorithm always advances in the direction in which the func-
tion changes the most (the largest slope). The initial guess x0 is often chosen randomly from
the space, or in some cases it is chosen based on the structure of the problem. The choice
of the parameter α is important. A very small α will result in very slow progress, while a
large α can ’shoot too far’, thus in some cases it will not converge. It is also possible to
change α in each iteration of the algorithm, and often the value of α can be optimized in
each iteration so that f(x) is minimized in that step. The convergence rule of step (4) may
be, for example, that the change in f(x) is smaller than a given parameter ε.

In the case of linear regression, the function that we are interested in minimizing is
f(a) =

∑n
i=1(yi − xia)2. The gradient is ∇f(a) = −X t(y −Xa). Therefore, we start from

a guess a0, and in each iteration we define ak+1 = ak + αX t(y −Xak). In the case of linear
regression, we can even find the best possible value for α, since f(ak+1) is a quadratic function
of α.

The gradient descent algorithm is very efficient. Note that αX ty is fixed across all
iterations, and X tX can be computed once. Then, each iteration costs O(d2). On the other
hand, solving the Normal Equations requires inverting the matrix X tX, which takes O(d3).
In both algorithms the matrix itself needs to be computed in time O(nd2), so the gradient
descent algorithm becomes beneficial when d is large, assuming a small number of iterations
will be sufficient. The algorithm is also very simple and can be easily implemented.

Online Least Squares. The least squares problem can be viewed as an online learning
problem, where we get the samples (xi, yi) one at a time. In this case, we start from an
arbitrary solution, usually a0 = 0, and then we perform updates based on the gradient of
the function restricted to the new sample. Thus,

ak+1 = ak + α(yk+1 − xk+1ak)x
t
k+1.

Clearly, each iteration is highly efficient and costs O(d). The algorithm is similar to the
perceptron. In the perceptron, we are also searching for a vector a, such that xia will be
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close to y ∈ {−1, 1}. Recall that in the perceptron, if sign(xk+1ak) 6= sign(yk+1) then we
set ak+1 = ak + yk+1x

t
k+1.

9.5 Singularity

Recall that the solution to the Normal Equations is a = (X tX)−1X ty. If X tX is nonsingular,
then there is a unique solution. However, if X tX is a singular matrix, there is an infinite
number of solutions, basically the set of solutions corresponds to the kernel of X tX. Even if
X tX is nonsingular, the solution may be arbitrary. Consider for example the set of points
in Figure 9.4. In this case, the value of z is determined by x, y, however all the data points
collected have xi ≈ yi. Therefore, all we can really say is that the regression solution should
correspond to a line, since every plane that intersects with the regression line is a potential
solution. In practice, however, a specific solution will be chosen based on the small variance
captured in the space orthogonal to that line. If all the points were on the line y = x then the
matrix X tX would be singular and all planes intersecting with the regression line correspond
to valid solutions.

Figure 9.4: An example for a regression in an almost singular scenario

In which cases would we expect to have a nonsingular matrix X tX. Note that the
singularity of X tX depends on its rank. X tX is a d× d matrix, and it is singular if its rank
is strictly smaller than d. Since rank(X tX) = rank(X), the matrix will be singular if the
columns of X are linearly dependent. When will this happen? Typically, when the number
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of variables is large (i.e., d is large), we get into situations in which the columns of X are
either linearly dependent or close to co-linearity. This often happens since we tend to collect
many correlated measurements.

In practice, however, the matrix will typically not be singular since the different mea-
surements taken are noisy, and the noise adds a matrix of full rank to X. However, we
would not want to predict the noise because we will end up with overfitting. Consider for
example the case where d = n. This case is extreme, and here you can find a directly by
solving a = X−1y, and thus (y −Xa)t(y −Xa) = 0. Clearly the solution over-fits here and
intuitively we would want to have a small number of variables explaining y. In order to
resolve this issue we use regularization, as explained in the next section.

9.6 Linear Regression with Regularization

Intuitively we want to solve the least squares problem using a small number of variables. We
therefore want to penalize our objective function if the number of variables used is large. To
do so, we introduced a constant λ, which is set as an input to our problem. We call λ the
regularization parameter. We are now interested in solving the following problem:

â = arg min
a
{(y −Xa)t(y −Xa) + λ‖a‖0}. (9.2)

Here, ‖a‖0 is the L0 norm of a, which is simply the number of non-zero entries. In what

follows we will use the notations ‖a‖p =
(∑d

i=1 |ai|p
) 1
p

for the Lp norm of a vector (with

p > 0).

The formulation described in 9.2 involves the choice of a parameter λ. When λ = 0 the
problem is reduced to the standard linear regression formulation. When λ→∞ it becomes
better to set ai = 0 for all i. The choice of λ can be made using model selection techniques,
for instance using cross validation.

Generally, the problem described in 9.2 is NP-hard (if you studied complexity try proving
it, it’s a good exercise) , meaning that it is probably very difficult, if possible at all, to find a
polynomial time algorithm that finds the optimum. Therefore people use different heuristics.
For instance, you can start by setting ai = 0 for all entries, and add each time another
variable (a1, a2, . . . , ad). In each iteration you test whether setting ai 6= 0 can improve the
current result. Obviously the order in which we traverse the variables may affect the results,
and typically one can decide in each iteration to add the variable that provides the best
improvement for the objective function. We can also go backwards - start with the solution
involving all entries and in each step remove one variable (for instance the one with the
smallest coefficient in terms of absolute value), as long as the objective function increases.
These algorithms are variants of the forward and backward stepwise regression algorithm.
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9.7 Shrinkage Methods

Since the L0 formulation is hard, we can consider other approximations. Two of the most
widely used approximations are based on the L1 and L2 approximation. We will first describe
the L2 approximation, termed Ridge regression.

9.7.1 Ridge Regression

In Ridge regression we are interested in optimizing the following for a specified parameter λ:

â = arg min
a
{(y −Xa)t(y −Xa) + λ‖a‖22}. (9.3)

We will now try to generalize the Normal Equations to the case of Ridge regression. Note
that the optimization function can be written as

f(a) = (y −Xa)t(y −Xa) + λata

= yty − atX ty − ytXa+ atX tXa+ λata

Therefore,
∂f(a)

∂a
= 2(X tX + λI)a− 2X ty

and we get that the solution to the Ridge regression is given by

â = (X tX + λI)−1X ty. (9.4)

The solution given by Equation 9.4 has a few interesting properties. First, it is easy to see
that when λ = 0 we get the Normal equations, which is what we should expect. Second,
note that the matrix X tX + λI is positive definite and therefore non-singular for λ > 0.
Therefore Ridge regression can be viewed as a numerical correction to the standard linear
regression - by adding a small positive λ times the identity to X tX we implicitly change the
set of columns of X so that it has full rank and is far from singular.

The motivation for applying Ridge regression goes beyond the numerical issues. We can
view Ridge regression as a Bayesian generalization of the standard linear regression. Consider
the following model:

y =
d∑
j=1

ajXj + ε,

where Xj is the j − th variable of the regression, and we assume ε ∼ N(0, σ2) where σ is
unknown. This is the standard regression model. In Ridge regression, we use a hierarchical
model in which we assume that the coefficients are not fixed but instead they are randomly
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picked from a normal prior, i.e., aj ∼ N(0, τ 2). If we now write down the log of the posterior
under the assumption that σ, τ are known (ignoring the normalizing constant), we get:

logPosterior(a | σ, τ,Data) = − 1

2σ2

n∑
i=1

(yi − a · xi)2 −
1

2τ 2

d∑
i=1

a2i

−n
2

log(2πσ2)− d

2
log(2πτ 2)

Therefore, maximizing the posterior is equivalent to solving Ridge regression with λ = σ2

τ2
.

This is a very natural Bayesian extension of standard linear regression. Clearly more compli-
cated Bayesian priors could be introduced, for example the prior of a could be a multivariate
normal distribution and in this case we will obtain a similar analysis.

9.7.2 Lasso Regression

In Lasso regression we are interested in optimizing the following for a specified parameter λ:

â = arg min
a
{(y −Xa)t(y −Xa) + λ‖a‖1}. (9.5)

Note that the only difference between Lasso and Ridge is that the penalty is an L1 penalty
instead of L2. Simplifying the Lasso minimization problem we get an equivalent formulation:

â = arg min{at(X tX)a− 2ytXa+ λ
d∑
i=1

|ai|}

This in turn can be written in the following equivalent form, as a constraint optimization
problem:

mina{at(X tX)a− 2ytXa+ λ
d∑
i=1

bi}

s.t. bi ≥ ai, i = 1, . . . , d

bi ≥ −ai, i = 1, . . . , d

This constraint optimization program is a quadratic program, with a convex optimization
function, since X tX is positive semidefinite. Recall that in quadratic programming the min-
imum is unique and can be reached in polynomial time when the objective is a combination
of a linear function and a positive definite quadratic term. This makes the Lasso regression
an attractive approach since it can be efficiently calculated.
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Figure 9.5: The Normal vs. Laplace priors (mean 0, variance 1)

Similarly to Ridge regression, also here we can have a Bayesian model that motivates the
choice of Lasso. Consider the hirearchical model in which the coefficients aj are sampled from

a Laplace distribution, aj ∼ Laplace(0, 2σ
2

λ
). The Laplace distribution, sometimes referred to

as the double exponential distribution, has the following properties. The probability density
function (pdf) of the Laplace distribution Laplace(µ, σ) is

pdf(x) =
1

2σ
e−
|x−µ|
σ

The mean of the Laplace distribution is µ and the variance is 2σ2. Thus, in the model where
aj ∼ Laplace(0, 2σ

2

λ
), we get

pdf(aj) =
λ

4σ2
e−

λ
2σ
|aj |

Therefore, given λ, σ, we can write down the log of the posterior (ignoring the normalizing
factor):

logPosterior(a | Data, λ, σ) = − 1

2σ2

n∑
i=1

(yi − a · xi)2 −
n

2
log(2πσ2)

+d log

(
λ

4σ2

)
− λ

2σ2

d∑
i=1

|ai|
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It is easy to verify that maximizing the a posteriori is equivalent to minimizing the Lasso
minimization function.

The difference between Lasso and Ridge can therefore be viewed as a difference in the as-
sumption on the priors used (see Figure 9.5). There is an interesting geometric interpretation
for this difference. We can introduce the following constraint optimization program:

mina(y −Xa)t(y −Xa)

s.t.

d∑
i=1

|ai| ≤ λ′

We claim that for every λ we can find λ′ such that the solution of Lasso and the above
program is the same. Consider the solution â of the original Lasso optimization. Let
λ′ =

∑d
i=1 |âi|. Clearly, â is also a solution of the above program with λ′. If there is a

better solution a′, it is easy to see that a′ will also provide a better solution for the Lasso
optimization. Similarly, we can show that for every λ there is λ′ so that the Ridge solution
with the parameter λ is obtained as the solution for the following constraint optimization
program:

mina(y −Xa)t(y −Xa)

s.t.
d∑
i=1

a2i ≤ λ′

Thus, Lasso and Ridge correspond to the constraint optimization problem in which we are
interested in minimizing the least squares of the residuals, so that the vector of coefficients is
within a ball of radius λ′ (the ball is an L1 ball in the case of Lasso, and an L2 ball in the case
of Ridge). The geometric interpretation of this view is given in Figures 9.6 and 9.7. The best
result of the linear regression, denoted by âregression is outside the ball. The counter lines,
in which the value of the least squares is the same across the line, hit the ball at a specific
point, which is the Ridge or Lasso solution. One of the advantages of Lasso is that the ball
has a square-like form, and therefore the optimal solution is usually obtained in a vertex. In
such cases, many of the entries are zero, and it is therefore usually a better approximation
to the L0 optimization criterion. In the example of Figure 9.7, the value of a1 is zero.
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Figure 9.6: Geometric interpretation of Ridge regression

Figure 9.7: Geometric interpretation of Lasso regression


