
and 11

Introduction to Machine Learning Fall Semester, 2013

Recitation 10 and 11: December 22, 29
Lecturer: Mariano Schain Scribe: ym

10.1 Project

The project was described. More details in the web site.

10.2 PCA

10.2.1 SVD properties

We have a data matrix X that has all the m data points as columns. The dimensions of
X is N × m, where N is the number of attributes of a data point. We assume that the
average of X (column-wise. that is, for each attribute) is 0 1. The rank of the matrix X is
r ≤ min{m,N}.

X =


...

...
x1 · · · xm
...

...


The SVD of X has the form

X = UxΣxV
t
x

where Σ is a diagonal matrix,

Σx = diag(σ1 ≥ σ2 ≥ · · · ≥ σr > 0)

Ux is an N × r orthonormal matrix, i.e., utiuj = δi,j where δi,j = 1 if i = j and δi,j = 0 if
i 6= j.

Ux =


...

...
u1 · · · ur
...

...


1Question: cosidering the material discussed later, is it important to normalize the attributes such that

all have the same variance?

1



2 Lecture 10 and 11: December 22, 29

Similarly, Vx is an r ×m orthonormal matrix,

Vx =

 · · · vt1 · · ·
...

· · · vtr · · ·


Another property of the SVD is that: utjX = σjv

t
j and Xvj = σjuj.

Consider now the covariance matrix of X:

XX t =(UxΣxV
t
x )(UxΣxV

t
x )t

=UxΣxV
t
xVxΣxU

t
x

=UxΣ2
xU

t
x

This gives an alternative way to get the elements of the SVD of X - by finding the
eigenvectors Ux and corresponding eigenvalues Σx of the symmetric matrix XX t (Vx may
then be computed using the relation Vx = X tUxΣ−1. Also, a similar derivation as above
shows that Vx are the eigenvectors of X tX with the same eigenvalues Σ2

x).

10.2.2 Mapping the data to a lower dimension feature space

Let Uk be the orthonormal matrix U with rank k ≤ r:

Uk =


...

...
u1 · · · uk
...

...


We define Pk = UkU

t
k. We like to see what happens when we apply Pk to a data point xi:

Pkxi = UkU
t
kxi = Uk

 ut1xi
...

utkxi

 =
k∑

j=1

(utjxi)uj

so it turns out that the result is a linear combination of the columns of Uk. Therefore Pk can
be viewed as a projection of the data to a k dimension subspace of RN . It is easy to verify
the following two properties: (1) P t

k = Pk, and (2) P 2
k = Pk.

This can be viewed as a mapping of the N dimensional data to a k dimensional space (still
embedded in RN), where the basis elements (the axis) are the ui. With that interpretation,
the data point xi is mapped to the vector ((ut1xi), . . . , (u

t
kxi)).



10.2. PCA 3

To truly get a mapping to Rk we use the mapping Y = U t
kX. this defines the k × m

mapped data matrix Y

Y = U t
kX =


...

...
U t
kx1 · · · U t

kxm
...

...



The columns of Y (each yi = U t
kxi called the score of data point xi) are the projection of the

original data to Rk. Those scores, in a k dimensional space (where the axes - sometimes called
the loading - are {u1, . . . , uk}) may now be process by other machine learning algorithms (e.g.
SVM, clustering, etc’) that can now be executed faster (due to fewer dimensions) and with
better results (due to the elimination of irrelevant/noise attributes).

10.2.3 Optimality of the mapping

To justify the choice of the transformation PkX (using Uk, the loadings related to the k
highest eigenvectors of the SVD) we consider the norm of the residual,

‖PkX −X‖2F

where the F stands for the Frobenious norm, which is the sum of the squares of the entries.
By the properties of the projection P (i.e. P 2 = P ) and linearity of the trace operator we
have

‖PkX −X‖2F = Tr
(
(PkX −X)t(PkX −X)

)
= −Tr(X tPX) + Tr(X tX) (10.1)

Therefore, minimizing the Frobenious norm is equivalent to maximizing the trace, and



4 Lecture 10 and 11: December 22, 29

we get (using Tr(AB) = Tr(BA) in the one-before-last equality)

min
Pk

‖PkX −X‖2F = max
Pk

Tr(X tPX)

= max
Pk

Tr(X tUkU
t
kX)

= max
Pk

Tr((X tUk)(X tUk)t)

= max
Pk

Tr




...
...

σ1u1 · · · σkuk
...

...


 · · · σ1v

t
1 · · ·

...
· · · σkv

t
k · · ·




= max
Pk

Tr


 · · · σ1v

t
1 · · ·

...
· · · σkv

t
k · · ·




...
...

σ1u1 · · · σkuk
...

...




=
k∑

j=1

σ2
j

We conclude that the projection that takes the loadings corresponding to the k highest
eigenvalues of the SVD of the original data X is optimal in the sense of preserving the
information in the original data (as measured by the Frobenious norm).

10.2.4 Mapped samples Y are uncorrelated

Recall that the dimension of X is N ×m, having each example as a column. The dimension
of X tX is m × m and of XX t is N × N . The eigenvectors of XX t are the columns of U
and the eigenvectors of X tX are the columns of V . Recall also that Y = U t

kX (taht is,
the data mapped to a k dimensional feature space using the k first principal components
Uk). Therefore we can write Y Y t = U t

kXX
tUk = diag(σ2

1, . . . , σ
2
r). On the other hand

Y Y t =
∑

i yiy
t
i . This implies that the resulting samples Y in k dimensions are not correlated.

10.2.5 Example - Eigenfaces

Setting

Given a set of pictures (portraits) of world leaders, each picture is 50 by 35 gray-scale pixels,
hence represented by a 1850 × 1 column vector. PCA with k = 6, 12, 120 was done on a
subset X of ∼ 1000 pictures of the six most frequent leaders appearing in the pictures (each
leader having at least ∼ 90 different pictures).



10.2. PCA 5

bi-plots

For the PCA with k = 6, the mapped pictures Y are the resulting 6-dimentional represen-
tation of each of the original pictures. Each yi may now be plotted in a 6 dimensional plot
where the axes are the columns of U6 (the loadings). The coordinates of yi are the scores.
This plot is a representation of what may be used to further apply machine learning (e.g.
for clustering, classification, etc’). The same k = 6 axes may be used to plot (overlay the
plots of Y , hence the name bi-plot) a point for each original feature (each pixel in our case)
- each feature j of the original N = 1850 features is now represented as a 6-long vector
(u1j, . . . , u6j).

Results and Interpretations

Each principal component uj is a 1850 long vector and hence also a picture (an eigenface).
Figure 10.1 shows the principal eigenfaces for k = 12.

Figure 10.1: Eigenfaces

To illustrate the possible semantics of each principal component we did the following
(k = 6): For each principal component uj twelve representative (original) pictures were
chosen, with scores evenly spread accross the range of the uj coordinate. Figure 10.2 shows
the representative pictures chosen (a row, top to bottom, for each principal component). It
is easy to see that the first two principal components capture (respectively) the illumination
level and direction.



6 Lecture 10 and 11: December 22, 29

Figure 10.2: Represantative (original) pictures, for each principal component. In each row
(representing one component) the pictures are ordered left to right with increasing score.

10.3 Kernel PCA

10.3.1 The case N >> m

Consider the case that we have much more features than examples N >> m. We like to
consider k ≤ r and have,

Vk =


...

...
v1 · · · vk
...

...


Those are the first k eigenvectors of X tX with orresponding σ2

1 ≥ σ2
2 ≥ · · · ≥ σ2

k > 0
eigenvalues.

Claim 10.1
Uk = XVkΣ−1

k (10.2)

where Σ2
k = diag(σ2

1, . . . , σ
2
k).

Proof: Recall that X tXVk = VkΣ2
k, since the columns of Vk are the eigenvectors of X tX.

We can now multiply by X from the left and have XX t(XVk) = (XVk)Σ2
k. This implies

that the columns of XVk are the eigenvectors of XX t. Since the first k eigenvectors of XX t



10.3. KERNEL PCA 7

are the columns of Uk we are almost done, the only issue is that the eigenvectors are not
normalized.

To normalize, we multiply the eigenvectors XVk by Σ−1
k . Set Uk = XVkΣ−1

k . We now
have that

U t
kUk = Σ−1

k V t
kX

tXVkΣ−1
k = Σ−1

k V t
k (VkΣ2

k)Σ−1
k = Σ−1

k Σ2
kΣ−1

k = I

�
This allows us to do PCA by first computing V,Σ2 - the eigenvectors and eigenvalues of

X tX (a matrix m×m), an operation of complexity O(m3), and recover U using (10.2)2.

10.3.2 The kernel trick

We can now discuss the Kernel PCA. Consider a mapping x→ φ(x) (where x is n× 1 and
φ(x) is N × 1) induced by a proper kernel K(·, ·). Recal the definition of the kernel data

matrix K = K(X) , X tX (That is, Ki,j = (φ(xi))
tφ(xj) = K(xi, xj)).

If we try to do PCA in a straightforward way, we need to compute the matrix U whose
dimension depend on N which might be huge or infinite. The main observation is that we do
no need to compute U , we are rather interested only in Y - the mapping to the k dimensional
subspace. Using (10.2) above, we have that

Y = U t
kX = Σ−1

k V t
kX

tX = Σ−1
k V t

kK

Therefore, in order to compute Y we do not have to compute U , but rather we can compute

Y using K and Vk. Furthermore, the mapping of an arbitrary x (in the original feature
space, before the mapping induced by the kernel K) to the k dimensional space spanned by
the columns of Uk can be similarly computed:

y = U t
kφ(x) = Σ−1

k V t
kX

tφ(x) = Σ−1
k V t

kK(X, x)

Where K(X, x) is a column vector with K(xi, x) at the ith position.

2The alternative, finding U first, is significantly less efficient in the case N >> m.


