Introduction to Machine Learning Fall Semester, 2013

Recitation 12: January 5

Lecturer: Mariano Schain Scribe: ym

12.1 Project

There will be an optional intermediate stage, where groups that would like can submit their
classification on the test data and receive a feedback (the percent of errors) Details in the
web site.

12.2 Decision Trees

12.2.1 Terminology and Reminder

Assume a binary classification setting (for every training sample, let f be the binary label).
We like to decide in each node on the split, i.e., the predicate h to assign to the node. The
local parameters are ¢ = Pr[f = 1], which is the fraction of 1s in the examples reaching the
node, u = pr[h = 0]' is the fraction of samples for which h = 0 out of the samples reaching
the node, p = Pr[f = 1|h = 0] is the fraction of 1s in the samples reaching the node and
having h = 0, and r = Pr[f = 1|h = 1] is the fraction of 1s in the samples reaching the node
and having h = 1. We have that ¢ = up + (1 — u)r. (See Figure 12.1.)

Recall the decision-tree algorithm from class: We use a strictly convex node index function
v(+)? that associates a value to a node as a function of the proportion of positively labeled
examples in the node (¢ using our above terminology). Now, by strict convexity of v(-) we
have

v(q) > u-v(p) + (1 —u)v(r)

And at a given node we seek to find a predicate h that splits in a way that mostly reduces
the right hand side of the above inequality (the resulting node potential).

'We use h = 0 to indicate that the predicate h is false and h = 1 for the case h is true
2An example of a split index is v(p) = —plogy p — (1 — p) logy (1 — p) which is the binary entropy function.
(In class we normalized by multiplying by a half, but this will not make a difference.)

2 Lecture 12: January 5

q=Pr[f=1]

1-u=Pr[h=1]

p=Pr[f=1|h=0] r=Pr[f=1|h=1]

Figure 12.1: The split in a node

12.2.2 Instability Example

We consider the sample 2-feature binary labeled data in figure 12.2a ®. The root’s optimal
decision stump h = "z; < 0.6” reduces the potential 4 from the initial 1 (since the sample
contains an equall number of positive and negative samples) to

10 7 6 1
—v | = —uv | =] ~0.79
16" (10) T (6)
We continue performing the splits and derive the decision tree of Figure 12.3.
We can now consider what will happen if we slightly modify the location of a single point
as follows. (See Figure 12.2b.)

The modified data still has the root split h = "7 < 0.6” resulting in the same value
~ 0.79, but for the root split h = "xy < 0.32” we have

7 1 9 7

—uv | = —v | =] ~=0. T

67 <7) + T <9> 0.68 < 0.79
This implies that the minor change will change the optimal predicate at the root and might
impact the entire tree.

3Example from http://www.lsv.uni-saarland.de/pattern_sr_ws0607 /psr_0607_Chap10.pdf, slide 30
4We use the entropy function throughout.

12.3. USING DECISION TREES IN OTHER ALGORITHMS 3

X3 0.69 X 0.69

A ® A ®

A
0.61 0.61

A e A e

) o

0.32 0.32 g’
) ®)) ®

A Xq A Xy
0.35 0.6 0.35 0.6

(a) Original sample set (b) Slight change in one sample.

Figure 12.2: Example of data for decision tree instability. Triangles are positively labeled
and circles are negatively labeled

12.3 Using decision trees in other algorithms

12.3.1 Boosting Trees

We run AdaBoost as it is, with simple trees (e.g. with a single split) as weak learners. At
each AdaBoost iteration, the weight w; assigned to each training sample (z;,¥;) is used to
compute the probabilities ¢, u, p, and r of Figure 12.1: Instead of just counting positive and
negative labeles, we need to compute frequencies we weigh them according to the weights.
For example we replace Pr[f = 1] by >, = wi/W, where W = > 7" | w;. Combining the
decision trees is done using the standard AdaBoost weights a;.

12.3.2 Random Forest

We first review the Bagging and Stacking patterns:

Bagging

In order to reduce variance, the original sample set S is sub-sampled (with repetitions)
to create k new sample sets Sy, ... Sy which are fed to the learning algorithm A. The k
resulting hypotheses hy, ... h; form a new (resulting) hypothesis that given z classifies using
the majority among {h(x), ..., hi(z)} . See Figure 12.4

4 Lecture 12: January 5

Figure 12.3: The tree that is built

Stacking

Here, in order to find a way to best combine learning algorithms, the original sample S is
fed to the k independent learning algorithms Aq, ... Ay, resulting in hypotheses hq, ..., hy
(respectively) which are used to create a new sample set

Sl = {(h1<$), - ,hk(x)),y)l(x,y) € S}

S may now be used by any other learning algorithm to result in a hypothesis h that classifies
by first mapping any input x to (hy(x),..., hg(x)).

Scaling Random Forest

The Random Forest flow (see Figure 12.6) has ingredients from both Bagging and Stacking
patterns: First, as in Bagging, the original sample set S is sub-sampled to k£ sample sets
St,..., S Subsequently, as in Stacking, each sample set S; is used to build a random
decision tree h; (random in the the sense that the attributes used for the nodes predicates
are randomly restricted as explained in class) and in that sense the algorithm used to build
h; is designated A;. The resulting decision trees are finally combined to a majority voting
h. Note that the k threads of sub-sampling S and using A; to build h; are independent and
may therefore be easily paralelized! °

5Challenge: Identify other machine learning patterns and algorithms that are similarly comprised of
independent threads and therefore may also be easily parallelised.

12.3. USING DECISION TREES IN OTHER ALGORITHMS

S5

S

hy

hy

Figure 12.4: Flow of Bagging

h
—A, 1

hy

Ay

(ha(x), ..., hi(x),y)

Figure 12.5: Flow of Stacking

Sk A

Lecture 12: January 5

hy

Figure 12.6: Flow of Random Forest

