Introduction to Machine Learning

Recitation 12: January 5

Lecturer: Mariano Schain

Scribe: ym

# 12.1 Project

There will be an optional intermediate stage, where groups that would like can submit their classification on the test data and receive a feedback (the percent of errors) Details in the web site.

# 12.2 Decision Trees

### 12.2.1 Terminology and Reminder

Assume a binary classification setting (for every training sample, let f be the binary label). We like to decide in each node on the split, i.e., the predicate h to assign to the node. The local parameters are  $q = \Pr[f = 1]$ , which is the fraction of 1s in the examples reaching the node,  $u = pr[h = 0]^1$  is the fraction of samples for which h = 0 out of the samples reaching the node,  $p = \Pr[f = 1|h = 0]$  is the fraction of 1s in the samples reaching the node and having h = 0, and  $r = \Pr[f = 1|h = 1]$  is the fraction of 1s in the samples reaching the node and having h = 1. We have that q = up + (1 - u)r. (See Figure 12.1.)

Recall the decision-tree algorithm from class: We use a strictly convex node index function  $v(\cdot)^2$  that associates a value to a node as a function of the proportion of positively labeled examples in the node (q using our above terminology). Now, by strict convexity of  $v(\cdot)$  we have

$$v(q) > u \cdot v(p) + (1-u)v(r)$$

And at a given node we seek to find a predicate h that splits in a way that mostly reduces the right hand side of the above inequality (the resulting node *potential*).

<sup>&</sup>lt;sup>1</sup>We use h = 0 to indicate that the predicate h is false and h = 1 for the case h is true

<sup>&</sup>lt;sup>2</sup>An example of a split index is  $v(p) = -p \log_2 p - (1-p) \log_2(1-p)$  which is the binary entropy function. (In class we normalized by multiplying by a half, but this will not make a difference.)



Figure 12.1: The split in a node

## 12.2.2 Instability Example

We consider the sample 2-feature binary labeled data in figure 12.2a<sup>3</sup>. The root's optimal decision stump  $h = "x_1 < 0.6"$  reduces the potential <sup>4</sup> from the initial 1 (since the sample contains an equal number of positive and negative samples) to

$$\frac{10}{16}v\left(\frac{7}{10}\right) + \frac{6}{16}v\left(\frac{1}{6}\right) \approx 0.79$$

We continue performing the splits and derive the decision tree of Figure 12.3.

We can now consider what will happen if we slightly modify the location of a single point as follows. (See Figure 12.2b.)

The modified data still has the root split  $h = "x_1 < 0.6"$  resulting in the same value  $\approx 0.79$ , but for the root split  $h = "x_2 < 0.32"$  we have

$$\frac{7}{16}v\left(\frac{1}{7}\right) + \frac{9}{16}v\left(\frac{7}{9}\right) \approx 0.68 < 0.79$$

This implies that the minor change will change the optimal predicate at the root and might impact the entire tree.

 $<sup>^3\</sup>rm Example$  from http://www.lsv.uni-saarland.de/pattern\_sr\_ws0607/psr\_0607\_Chap10.pdf, slide 30  $^4\rm We$  use the entropy function throughout.



Figure 12.2: Example of data for decision tree instability. Triangles are positively labeled and circles are negatively labeled

# 12.3 Using decision trees in other algorithms

### 12.3.1 Boosting Trees

We run AdaBoost as it is, with simple trees (e.g. with a single split) as weak learners. At each AdaBoost iteration, the weight  $w_i$  assigned to each training sample  $(x_i, y_i)$  is used to compute the probabilities q, u, p, and r of Figure 12.1: Instead of just counting positive and negative labeles, we need to compute frequencies we weigh them according to the weights. For example we replace  $\Pr[f = 1]$  by  $\sum_{i:f(x_i)=1} w_i/W$ , where  $W = \sum_{i=1}^m w_i$ . Combining the decision trees is done using the standard AdaBoost weights  $\alpha_t$ .

### 12.3.2 Random Forest

We first review the Bagging and Stacking patterns:

#### Bagging

In order to reduce variance, the original sample set S is sub-sampled (with repetitions) to create k new sample sets  $S_1, \ldots S_k$  which are fed to the learning algorithm A. The k resulting hypotheses  $h_1, \ldots h_k$  form a new (resulting) hypothesis that given x classifies using the majority among  $\{h_1(x), \ldots, h_k(x)\}$ . See Figure 12.4



Figure 12.3: The tree that is built

#### Stacking

Here, in order to find a way to best combine learning algorithms, the original sample S is fed to the k independent learning algorithms  $A_1, \ldots, A_k$ , resulting in hypotheses  $h_1, \ldots, h_k$  (respectively) which are used to create a new sample set

$$S' = \{(h_1(x), \dots, h_k(x)), y) | (x, y) \in S\}$$

S' may now be used by any other learning algorithm to result in a hypothesis h that classifies by first mapping any input x to  $(h_1(x), \ldots, h_k(x))$ .

#### Scaling Random Forest

The Random Forest flow (see Figure 12.6) has ingredients from both Bagging and Stacking patterns: First, as in Bagging, the original sample set S is sub-sampled to k sample sets  $S_1, \ldots, S_k$ . Subsequently, as in Stacking, each sample set  $S_i$  is used to build a random decision tree  $h_i$  (random in the the sense that the attributes used for the nodes predicates are randomly restricted as explained in class) and in that sense the algorithm used to build  $h_i$  is designated  $A_i$ . The resulting decision trees are finally combined to a majority voting h. Note that the k threads of sub-sampling S and using  $A_i$  to build  $h_i$  are independent and may therefore be easily paralelized! <sup>5</sup>

<sup>&</sup>lt;sup>5</sup>Challenge: Identify other machine learning patterns and algorithms that are similarly comprised of independent threads and therefore may also be easily parallelised.



Figure 12.4: Flow of Bagging



Figure 12.5: Flow of Stacking



Figure 12.6: Flow of Random Forest