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1.1 K-Means

In the k-means algorithm, in each iteration we have two actions:

Assign: Sets each point to its closest center:
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Update: Minimizes F by re-computing the centers:
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The algorithm has an objective function F , where
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The value of F (as a function of the centers and cluster assignments) decreases with
each iteration, until it stops (Figure 1.1). Theoretically we are not guaranteed convergence
because we might loop between configurations of identical F value .

More importantly, we might have a bad solution (see the example of 3-means in Figure
1.2).

How can we overcome the convergence problem? We can select a few random starting
points and select the best (the one that has the lowest observed F ). The dependency on the
number of clusters is illustrated in Figure 1.3.

Another issue is overfitting - while increasing k decreases F on the data we see, future
data may not behave well according to the k clusters we see.

An example for using the k-means: We have a picture with 512 × 512 pixels, each 24
bits (i.e., each has 8 bits for each color). We would like to do a compression to 4 bits per
pixel. We can view the input as 218 3-dimensional vectors (the colors of each pixel). We
run a 16-means algorithms on this input. When the algorithm ends we have 16 clusters, and
each pixel belongs to a cluster. Now we give each pixel the name of the cluster, and for each
cluster we keep its center. The total size in only 4 · 218 + 16 · 24 versus 24 · 218 before.
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Figure 1.1: Objective function F as a function of the number of iterations

1.2 k-Nearest Neighbors

The input we have are points and their classification, i.e., (x, y). The goal is to compute
a function f(x) and hopefully f(x) ≈ y. For binary classification (as in the lecture) we
can set f(x) = majority(x[1], . . . ,x[k]). For categorical classification we can use plurality
(instead of majority), i.e., f(x) = arg maxc{x[j]|y[j] = c}. For continuous values we can set

f(x) = (1/k)
∑k

j=1 y[j].
In order to make the problem sound, we need to select a loss function. For binary

prediction, an intuitive loss function is the 0 − 1-loss, where L(a, b) = 0 iff a = b and
otherwise L(a, b) = 1. We can also have a quadratic loss L2(a, b) = (a − b)2. We set
Lf (x, y) = L(f(x), y), i.e., a = f(x) and b = y. The rest of the discussion refers to the
continuous case.

To illustrate the influence of k, assume that the samples (x, y) are drawn from a specific
joint distribution of the random variables (X, Y ). Our goal is to select the function f that
minimizes

EX,Y [Lf (x, y)] = EX

[
EY |X

[
(f(x)− y)2

]]
The optimal function is f̂ such that f̂(x) = E[y|x] (exercise). However, we can not use

this in practice, since we do not know the distribution of (x, y). We can view the k-NN as
an approximation of f̂ .

The difference from f̂ is in two places: (1) We use points near x rather than x itself;
(2) We use the empirical average based only on a few points (k) rather than the underlying
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Figure 1.2: Bad and good solutions for 3 clusters
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Figure 1.3: Dependency of F on the number of clusters, optimal vs. algorithm

average of the conditional distribution (y|x).
For a very large k (e.g. k = n), the error is large, since we are grouping together very

different examples, hurting the approximation (1) above.
For a small k (e.g. k = 1), we approximate the conditional average based on a very small

sample set, hurting approximation (2) above and thereby fitting also noise.


