
Introduction to Machine Learning Fall Semester, 2014

Recitation 1: October 26th
Lecturer: Regev Schweiger Scribe: Yishay Mansour

1.1 K-Means

In the k-means algorithm, in each iteration we have two actions:

Assign: Sets each point to its closest center:

Ct
j = arg min

i
‖xj − µt−1

i ‖2, St
i = {j|Ct

j = i}

Update: Minimizes F by re-computing the centers:

µt
i = (1/|St

i |)
∑
j∈St

i

xj

The algorithm has an objective function F , where

F ((µ1, . . . , µk), (S1, . . . , Sk)) =
k∑

i=1

∑
j∈Si

‖xj − µi‖22

The value of F (as a function of the centers and cluster assignments) decreases with
each iteration, until it stops (Figure 1.1). Theoretically we are not guaranteed convergence
because we might loop between configurations of identical F value .

More importantly, we might have a bad solution (see the example of 3-means in Figure
1.2).

How can we overcome the convergence problem? We can select a few random starting
points and select the best (the one that has the lowest observed F). The dependency on the
number of clusters is illustrated in Figure 1.3.

Another issue is overfitting - while increasing k decreases F on the data we see, future
data may not behave well according to the k clusters we see.

An example for using the k-means: We have a picture with 512 × 512 pixels, each 24
bits (i.e., each has 8 bits for each color). We would like to do a compression to 4 bits per
pixel. We can view the input as 218 3-dimensional vectors (the colors of each pixel). We
run a 16-means algorithms on this input. When the algorithm ends we have 16 clusters, and
each pixel belongs to a cluster. Now we give each pixel the name of the cluster, and for each
cluster we keep its center. The total size in only 4 · 218 + 16 · 24 versus 24 · 218 before.

1

2 Recitation 1: October 26th

iterations

F

Figure 1.1: Objective function F as a function of the number of iterations

1.2 k-Nearest Neighbors

The input we have are points and their classification, i.e., (x, y). The goal is to compute
a function f(x) and hopefully f(x) ≈ y. For binary classification (as in the lecture) we
can set f(x) = majority(x[1], . . . ,x[k]). For categorical classification we can use plurality
(instead of majority), i.e., f(x) = arg maxc{x[j]|y[j] = c}. For continuous values we can set

f(x) = (1/k)
∑k

j=1 y[j].
In order to make the problem sound, we need to select a loss function. For binary

prediction, an intuitive loss function is the 0 − 1-loss, where L(a, b) = 0 iff a = b and
otherwise L(a, b) = 1. We can also have a quadratic loss L2(a, b) = (a − b)2. We set
Lf (x, y) = L(f(x), y), i.e., a = f(x) and b = y. The rest of the discussion refers to the
continuous case.

To illustrate the influence of k, assume that the samples (x, y) are drawn from a specific
joint distribution of the random variables (X, Y). Our goal is to select the function f that
minimizes

EX,Y [Lf (x, y)] = EX

[
EY |X

[
(f(x)− y)2

]]
The optimal function is f̂ such that f̂(x) = E[y|x] (exercise). However, we can not use

this in practice, since we do not know the distribution of (x, y). We can view the k-NN as
an approximation of f̂ .

The difference from f̂ is in two places: (1) We use points near x rather than x itself;
(2) We use the empirical average based only on a few points (k) rather than the underlying

1.2. K-NEAREST NEIGHBORS 3

GOOD

BAD

Figure 1.2: Bad and good solutions for 3 clusters

4 Recitation 1: October 26th

clusters = k

Fbest

optimal

algorithm

Figure 1.3: Dependency of F on the number of clusters, optimal vs. algorithm

average of the conditional distribution (y|x).
For a very large k (e.g. k = n), the error is large, since we are grouping together very

different examples, hurting the approximation (1) above.
For a small k (e.g. k = 1), we approximate the conditional average based on a very small

sample set, hurting approximation (2) above and thereby fitting also noise.

