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2.1 Cross Validation

Cross validation is a method to test the performance of your classifier when there is a limited
amount of data available.

We have as an input a set of examples S. We have an algorithm that given a sample T’
generates a hypothesis hp.

In the cross validation we will partition the sample randomly to k equal size parts. Let
S1, ..., Sk be the partition. We will run k iteration of our learning algorithm, where in
iteration ¢ we have as input S — S5;, and compute a hypothesis h;. We test the hypothesis h;
on S; and compute its observed error error;. Our predlction of the error of our hypothesis
would be the average of the observed errors, i.e., ¢ Z _,error;.

2.2 Maximum Likelihood

Consider a Poisson distribution. A Poisson distribution is defined by a parameter A > 0 and
the probability is define over integers and denoted by Pois(A). The motivation is that it
models an arrival rates of individual with an average arrival rate of \. The probability of
having k individual arrive when X ~ Pois()) is,
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Assume we have a sample of n points S = {z;, ..., 2z,} where each z; is drawn indepen-
dently from a distribution Pois(\). The likelihood function would be,
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Ls(A) = Pr[S|A] = [ [ Prlzi|A] = H
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It is many times more convenient to work with the log-Likelihood, simply taking the
logarithm of the likelihood, and the product becomes a sum. Note that if maximizing the
likelihood, it will be equivalent to maximizing the log-likelihood.

ls(N) =log Ls(A) = Z —A+ z;log A — log(z;!)
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We would like to find the A\ that maximizes the likelihood, denoted by Ap;r. Since the terms
log(z;!) do not depend on A\ we can ignore them in the maximization. We have,

n

Ay = arg max —nA\ + (Z z;) log \.
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Taking the derivative and equating with zero we have,
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and the solution is,
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We need to verify that this is indeed a maximum. The second derivative is
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and therefore we found a maximum.

2.3 Naive Bayes

Assume we ask 1,000 people about there radio listening habits. Each specifies whether he
listens to network A, to network B and to network C. (The feedback is Boolean, so we have
three Boolean attributes for each person.) In addition each person is asked if his income above
or below the average. (We denote by A above the average and by B below the average.)

This implies that our sample is S = {z;}}%° where 2; = (24, ¢;) and z; € {0,1}?, telling
which network a person listens to, and ¢; € {A, B} is the indicator whether the salary of the
person is above (A) or below (B) the average.

Consider the following prediction goal: Given the listening preferences of a person, decide
if his salary is above or below average.

Lets consider it more abstractly. Assume we have a set of possible outcomes C. (In
our example C' = {A, B}.) We have d Boolean attributes for each example (in the example
d = 3). As our prediction, we like to select the class ¢ € C' which is most likely given the
observation z. Namely,

h(xz) = arg max Pr[C = c|z] = arg max m
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Since Pr[z] does not depend on the class ¢ € C, we can ignore it and have
h(z) =arg max Pr[C = ¢, ]
= arg max Pr[C = ¢] Pr[z|C = ]
ce

= arg max log Pr[C' = ¢] + log Pr[z|C = (]
ce
the last identity follows since the logarithm is a monotone increasing function, hence taking
log does not change the maximization problem.
Now we get to the point that we want to model Pr[z|C' = ¢]. The Naive Bayes assumption
is that given the class C' = ¢ the d attributes in z are independent. Namely,

Prjz|C = ¢| = HPr[xj|C’ = (]

Jj=1

This implies that in the maximization we have

d

h(z) = log Pr[C' = log Pr[2’|C =

(x) arg max log r[C =] + Zl og Pr[2’|C = (]
]:

The main point is that we can estimate each of the parameters easily from the data.
One way of doing the estimate is considering them as a Bernoulli variable. The maximum
likelihood in this case would be the empirical frequency (as shown in the lecture).

Back to our example. The model there includes

(9147 037 {ej,Aa ej,B}?:l)a

where 04 = Pr[C' = A], 05 = Pr[C = BJ, 04 = Pr[a? = 1|C = A] and 0, 5 = Pr[z? = 1|C =
B].
Let #(I) be the number of records that have property I.
Using the Maximum Likelihood (ML) we set:

7 #(ci = A)
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