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3.1 Expectation Maximization (EM) algorithm

We assume a two stage process for generating point xi. First, given the unknown parameters
θ1 we generate ci (ci is unobserved). Given ci and theunknown parameters θ2 we generate
the observation xi.

θ1−→ ci
θ2−→ xi

Therefore, the model consists of two parametrised distributions:
Pr[c; θ1] the distribution of c when its parameter is θ1.
Pr[x|c; θ2] the conditional distribution of the observation x given the hidden c, for a parameter
θ2. Our goal is to recover the parameters θ = (θ1, θ2) based on the observations {xi}ni=1.

Consider the log-likelihood:

`(θ|{xi}) = log Pr[{xi}ni=1|θ]

=
n∑
i=1

log Pr[xi|θ]

=
n∑
i=1

log

(∑
c

Pr[ci = c; θ1] Pr[xi|ci = c; θ2]

)

Maximizing `(θ|{xi}) above is difficult in general due to the sum within the log (note however
that the form of the probabilities within the log is exactly given by our model). Therefore,
we do the following:

For a given xi we will define the probability of the hidden result being ci = j (we assume
that the hidden result is one of K possible results).

ati,j = Pr[ci = j|xi; θt]

The t indicates that ati,j is computed at iteration t, based on the parameter values θt that
were already computed at the end of iteration t− 1.

Recall that

Pr[x|y] =
Pr[x, y]

Pr[y]
=

Pr[y|x] Pr[x]∑
x Pr[x, y]

1
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Therefore,

ati,j = Pr[ci = j|xi; θt] =
Pr[xi|ci = j; θt2] Pr[ci = j; θt1]∑
c Pr[xi|ci = c; θt2] Pr[ci = c; θt1]

Note again that all forms of the above probabilities are exactly given by our model, and as-
suming the parameters θt were computed in the previous iteration the algorithm can directly
plug the computed parameters θt above and compute ati,j. Also note that

∑
j a

t
i,j = 1.

The EM algorithm alternates between an E-step and an M -step. In the E-step, we define
a function Q(θ|θt) as the average likelyhood (over the probabilities ati,j of the unobserved
outcomes) of our observations {xi}:

E-step : Q(θ|θt) =
n∑
i=1

k∑
j=1

ati,j log Pr[xi, ci = j; θ]

=
n∑
i=1

k∑
j=1

ati,j (log Pr[xi|ci = j; θ2] + log Pr[ci = j; θ1])

Note that the influence of θt in Q is through the coefficients ati,j. Also note that Q above
is a function of the model parameters θ = (θ1, θ2) (since the coefficients ati,j are previously
computed constants). Terefore, in the M-Step of the EM algorithm we find the parameters
θ that maximize Q.

M-step : θt+1 = arg max
θ
Q(θ|θt)

This time the maximization may be easy due to the log applied to each of the model
probabilities, as illustrated in the following sections.

3.2 Example 1: Three coins

In the first step we flip a coin with bias λ which returns either 1 or 2. More precisely,
Pr[ci = 1] = λ and Pr[ci = 2] = 1− λ. If ci = 1 then we flip a coin with bias p1 to set xi and
If ci = 2 then we flip a coin with bias p2 to set xi. The flow of information:

λ−→ ci
p1,p2−−−→
{1,2}

xi

The model has:
(1) Pr[ci = 1] = λ, (2) Pr[xi = 1|ci = 1] = p1, and (3) Pr[xi = 1|ci = 2] = p2.

We observe the sequence x = {xi}ni=1, for example x = (0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0) for
n = 13. We would like to run EM to recover the missing parameters θ = {λ, p1, p2}.
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For theE-Step at iteration t, assume we have the model parameters θt = {λt, pt1, pt2} and
compute ati,j (we only need ati,1 since ati,2 = 1− ati,1):

ati,1 =
λt(pt1)

x
i (1− pt1)1−xi

λt(pt1)
x
i (1− pt1)1−xi︸ ︷︷ ︸
ci=1

+ (1− λt)(pt2)xi (1− pt2)1−xi︸ ︷︷ ︸
ci=2

Now, the resulting form of Q(θ|θt) is:

Q(θ|θt) =
n∑
i=1

ati,1 (log λ+ xi log p1 + (1− xi) log(1− p1))

+ (1− ati,1) (log(1− λ) + xi log p2 + (1− xi) log(1− p2))

=

(
n∑
i=1

ati,1 log λ+ (1− ati,1) log(1− λ)

)

+

(
n∑
i=1

ati,1[xi log p1 + (1− xi) log(1− p1)]

)

+

(
n∑
i=1

(1− ati,1)[xi log p2 + (1− xi) log(1− p2)]

)
In the M -step we are maximizing Q:

θt+1 = (λt+1, pt+1
1 , pt+1

2 ) = arg max
θ=(λ,p1,p2)

Q(θ|θt)

Fortunately, this breaks up to three optimization problems

λt+1 = arg max
λ

(
n∑
i=1

ati,1

)
log λ+

(
n∑
i=1

(1− ati,1)

)
log(1− λ) = F (λ)

We compute

F ′(λ) =

∑n
i=1 a

t
i,1

λ
−
∑n

i=1(1− ati,1)
1− λ

= 0

and we get

λt+1 =

∑n
i=1 a

t
i,1

n

We need to verify that this is the maximum, by checking the second derivative

F ′′(x) = −
∑n

i=1 a
t
i,1

λ2
−
∑n

i=1(1− ati,1)
(1− λ)2

< 0
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Similarly we maximize p1 and p2 and get

pt+1
1 = arg max

p1

n∑
i=1

ati,1[xi log p1 + (1− xi) log(1− p1)] = F1(p1)

and get

pt+1
1 =

∑n
i=1 a

t
i,1xi∑n

i=1 a
t
i,1

and similarly,

pt+1
2 =

∑n
i=1(1− ati,1)xi∑n
i=1(1− ati,1)

3.3 Example 2: Mixture of Gaussians

In this setting we have a distribution p = (p1, . . . , pk) over k multivariate Gaussians of
d dimensions. Namely, the probability of a sample to originate from the jth Gaussian is
Pr[ci = j] = pj. The points in the jth MVN are generated using MVN(µj, εI), where
µj ∈ Rd and I is the identity d×d matrix. Therefore, the density function of the observation
xi given that it originates from the jth Gaussian is:

fj(xi) =
1

(
√

2πε)d
e−

1
2ε2
‖xi−µj‖2

Therefore, our model is θ = ({pj}, {µj}).
We set the ati,j as follows

ati,j =
ptjf

t
j (xi)∑k

r=1 p
t
rf

t
r(xi)

Note that the values of the parameters {µtj} (which are given at the E-Step, as computed
by the M -Step of the preceeding iteration) appear in f tj (xi) - this is actually the meaning of
the notation t in f tj (xi).

In the E-step we therefore have

Q(θ|θt) = Q(({pj}, {µj})|θt) =
n∑
i=1

k∑
j=1

ati,j

(
log pj + const− 1

2ε2
‖xi − µj‖2

)
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In the M -step we can separately maximize pt+1 and µt+1.

pt+1 = arg max
p

n∑
i=1

k∑
j=1

ati,j log pj

= arg max
p

k∑
j=1

(
n∑
i=1

ati,j) log pj

Recall that we have the constraint that
∑k

j=1 pj = 1. As we saw a few times, the maximizer
is,

pt+1
j =

∑n
i=1 a

t
i,j∑k

j=1

∑n
i=1 a

t
i,j

=

∑n
i=1 a

t
i,j

n

For the values of µt+1 we have

µt+1 = arg max
µ

n∑
i=1

k∑
j=1

− 1

2ε2
‖xi − µj‖2

= arg min
µ

n∑
i=1

k∑
j=1

‖xi − µj‖2

As we saw in the k-means, the minimizer is,

µt+1
j =

∑n
i=1 a

t
i,jxi∑n

i=1 a
t
i,j

In the next recitation we will review the connection of this setting to the K-means
algorithm and the related interpretation of the εI covariance matrix.


