Introduction to Machine Learning

Fall Semester, 2013
Recitation 3: October 27
Lecturer: Mariano Schain
Scribe: ym

3.1 Expectation Maximization (EM) algorithm

We assume a two stage process for generating point x_{i}. First, given the unknown parameters θ_{1} we generate c_{i} (c_{i} is unobserved). Given c_{i} and theunknown parameters θ_{2} we generate the observation x_{i}.

$$
\xrightarrow{\theta_{1}} c_{i} \xrightarrow{\theta_{2}} x_{i}
$$

Therefore, the model consists of two parametrised distributions:
$\operatorname{Pr}\left[c ; \theta_{1}\right]$ the distribution of c when its parameter is θ_{1}.
$\operatorname{Pr}\left[x \mid c ; \theta_{2}\right]$ the conditional distribution of the observation x given the hidden c, for a parameter θ_{2}. Our goal is to recover the parameters $\theta=\left(\theta_{1}, \theta_{2}\right)$ based on the observations $\left\{x_{i}\right\}_{i=1}^{n}$.

Consider the log-likelihood:

$$
\begin{aligned}
\ell\left(\theta \mid\left\{x_{i}\right\}\right) & =\log \operatorname{Pr}\left[\left\{x_{i}\right\}_{i=1}^{n} \mid \theta\right] \\
& =\sum_{i=1}^{n} \log \operatorname{Pr}\left[x_{i} \mid \theta\right] \\
& =\sum_{i=1}^{n} \log \left(\sum_{c} \operatorname{Pr}\left[c_{i}=c ; \theta_{1}\right] \operatorname{Pr}\left[x_{i} \mid c_{i}=c ; \theta_{2}\right]\right)
\end{aligned}
$$

Maximizing $\ell\left(\theta \mid\left\{x_{i}\right\}\right)$ above is difficult in general due to the sum within the \log (note however that the form of the probabilities within the log is exactly given by our model). Therefore, we do the following:

For a given x_{i} we will define the probability of the hidden result being $c_{i}=j$ (we assume that the hidden result is one of K possible results).

$$
a_{i, j}^{t}=\operatorname{Pr}\left[c_{i}=j \mid x_{i} ; \theta^{t}\right]
$$

The t indicates that $a_{i, j}^{t}$ is computed at iteration t, based on the parameter values θ^{t} that were already computed at the end of iteration $t-1$.

Recall that

$$
\operatorname{Pr}[x \mid y]=\frac{\operatorname{Pr}[x, y]}{\operatorname{Pr}[y]}=\frac{\operatorname{Pr}[y \mid x] \operatorname{Pr}[x]}{\sum_{x} \operatorname{Pr}[x, y]}
$$

Therefore,

$$
a_{i, j}^{t}=\operatorname{Pr}\left[c_{i}=j \mid x_{i} ; \theta^{t}\right]=\frac{\operatorname{Pr}\left[x_{i} \mid c_{i}=j ; \theta_{2}^{t}\right] \operatorname{Pr}\left[c_{i}=j ; \theta_{1}^{t}\right]}{\sum_{c} \operatorname{Pr}\left[x_{i} \mid c_{i}=c ; \theta_{2}^{t}\right] \operatorname{Pr}\left[c_{i}=c ; \theta_{1}^{t}\right]}
$$

Note again that all forms of the above probabilities are exactly given by our model, and assuming the parameters θ^{t} were computed in the previous iteration the algorithm can directly plug the computed parameters θ^{t} above and compute $a_{i, j}^{t}$. Also note that $\sum_{j} a_{i, j}^{t}=1$.

The EM algorithm alternates between an E-step and an M-step. In the E-step, we define a function $Q\left(\theta \mid \theta^{t}\right)$ as the average likelyhood (over the probabilities $a_{i, j}^{t}$ of the unobserved outcomes) of our observations $\left\{x_{i}\right\}$:

$$
\text { E-step : } \begin{aligned}
Q\left(\theta \mid \theta^{t}\right) & =\sum_{i=1}^{n} \sum_{j=1}^{k} a_{i, j}^{t} \log \operatorname{Pr}\left[x_{i}, c_{i}=j ; \theta\right] \\
& =\sum_{i=1}^{n} \sum_{j=1}^{k} a_{i, j}^{t}\left(\log \operatorname{Pr}\left[x_{i} \mid c_{i}=j ; \theta_{2}\right]+\log \operatorname{Pr}\left[c_{i}=j ; \theta_{1}\right]\right)
\end{aligned}
$$

Note that the influence of θ^{t} in Q is through the coefficients $a_{i, j}^{t}$. Also note that Q above is a function of the model parameters $\theta=\left(\theta_{1}, \theta_{2}\right)$ (since the coefficients $a_{i, j}^{t}$ are previously computed constants). Terefore, in the M-Step of the EM algorithm we find the parameters θ that maximize Q.

$$
\text { M-step : } \quad \theta^{t+1}=\arg \max _{\theta} Q\left(\theta \mid \theta^{t}\right)
$$

This time the maximization may be easy due to the log applied to each of the model probabilities, as illustrated in the following sections.

3.2 Example 1: Three coins

In the first step we flip a coin with bias λ which returns either 1 or 2. More precisely, $\operatorname{Pr}\left[c_{i}=1\right]=\lambda$ and $\operatorname{Pr}\left[c_{i}=2\right]=1-\lambda$. If $c_{i}=1$ then we flip a coin with bias p_{1} to set x_{i} and If $c_{i}=2$ then we flip a coin with bias p_{2} to set x_{i}. The flow of information:

$$
\xrightarrow{\lambda} c_{i} \xrightarrow[\{1,2\}]{p_{1}, p_{2}} x_{i}
$$

The model has:
(1) $\operatorname{Pr}\left[c_{i}=1\right]=\lambda$, (2) $\operatorname{Pr}\left[x_{i}=1 \mid c_{i}=1\right]=p_{1}$, and (3) $\operatorname{Pr}\left[x_{i}=1 \mid c_{i}=2\right]=p_{2}$.

We observe the sequence $x=\left\{x_{i}\right\}_{i=1}^{n}$, for example $x=(0,0,0,1,1,0,0,1,0,0,1,0,0)$ for $n=13$. We would like to run $E M$ to recover the missing parameters $\theta=\left\{\lambda, p_{1}, p_{2}\right\}$.

For the E-Step at iteration t, assume we have the model parameters $\theta^{t}=\left\{\lambda^{t}, p_{1}^{t}, p_{2}^{t}\right\}$ and compute $a_{i, j}^{t}$ (we only need $a_{i, 1}^{t}$ since $a_{i, 2}^{t}=1-a_{i, 1}^{t}$):

$$
a_{i, 1}^{t}=\underbrace{\frac{\lambda^{t}\left(p_{1}^{t}\right)_{i}^{x}\left(1-p_{1}^{t}\right)^{1-x_{i}}}{\lambda^{t}\left(p_{1}^{t}\right)_{i}^{x}\left(1-p_{1}^{t}\right)^{1-x_{i}}}+\underbrace{\left(1-\lambda^{t}\right)\left(p_{2}^{t}\right)_{i}^{x}\left(1-p_{2}^{t}\right)^{1-x_{i}}}_{c_{i}=2}}_{c_{i}=1}
$$

Now, the resulting form of $Q\left(\theta \mid \theta^{t}\right)$ is:

$$
\begin{aligned}
Q\left(\theta \mid \theta^{t}\right)= & \sum_{i=1}^{n} a_{i, 1}^{t}\left(\log \lambda+x_{i} \log p_{1}+\left(1-x_{i}\right) \log \left(1-p_{1}\right)\right) \\
& +\left(1-a_{i, 1}^{t}\right)\left(\log (1-\lambda)+x_{i} \log p_{2}+\left(1-x_{i}\right) \log \left(1-p_{2}\right)\right) \\
= & \left(\sum_{i=1}^{n} a_{i, 1}^{t} \log \lambda+\left(1-a_{i, 1}^{t}\right) \log (1-\lambda)\right) \\
& +\left(\sum_{i=1}^{n} a_{i, 1}^{t}\left[x_{i} \log p_{1}+\left(1-x_{i}\right) \log \left(1-p_{1}\right)\right]\right) \\
& +\left(\sum_{i=1}^{n}\left(1-a_{i, 1}^{t}\right)\left[x_{i} \log p_{2}+\left(1-x_{i}\right) \log \left(1-p_{2}\right)\right]\right)
\end{aligned}
$$

In the M-step we are maximizing Q :

$$
\theta^{t+1}=\left(\lambda^{t+1}, p_{1}^{t+1}, p_{2}^{t+1}\right)=\arg \max _{\theta=\left(\lambda, p_{1}, p_{2}\right)} Q\left(\theta \mid \theta^{t}\right)
$$

Fortunately, this breaks up to three optimization problems

$$
\lambda^{t+1}=\arg \max _{\lambda}\left(\sum_{i=1}^{n} a_{i, 1}^{t}\right) \log \lambda+\left(\sum_{i=1}^{n}\left(1-a_{i, 1}^{t}\right)\right) \log (1-\lambda)=F(\lambda)
$$

We compute

$$
F^{\prime}(\lambda)=\frac{\sum_{i=1}^{n} a_{i, 1}^{t}}{\lambda}-\frac{\sum_{i=1}^{n}\left(1-a_{i, 1}^{t}\right)}{1-\lambda}=0
$$

and we get

$$
\lambda^{t+1}=\frac{\sum_{i=1}^{n} a_{i, 1}^{t}}{n}
$$

We need to verify that this is the maximum, by checking the second derivative

$$
F^{\prime \prime}(x)=-\frac{\sum_{i=1}^{n} a_{i, 1}^{t}}{\lambda^{2}}-\frac{\sum_{i=1}^{n}\left(1-a_{i, 1}^{t}\right)}{(1-\lambda)^{2}}<0
$$

Similarly we maximize p_{1} and p_{2} and get

$$
p_{1}^{t+1}=\arg \max _{p_{1}} \sum_{i=1}^{n} a_{i, 1}^{t}\left[x_{i} \log p_{1}+\left(1-x_{i}\right) \log \left(1-p_{1}\right)\right]=F_{1}\left(p_{1}\right)
$$

and get

$$
p_{1}^{t+1}=\frac{\sum_{i=1}^{n} a_{i, 1}^{t} x_{i}}{\sum_{i=1}^{n} a_{i, 1}^{t}}
$$

and similarly,

$$
p_{2}^{t+1}=\frac{\sum_{i=1}^{n}\left(1-a_{i, 1}^{t}\right) x_{i}}{\sum_{i=1}^{n}\left(1-a_{i, 1}^{t}\right)}
$$

3.3 Example 2: Mixture of Gaussians

In this setting we have a distribution $p=\left(p_{1}, \ldots, p_{k}\right)$ over k multivariate Gaussians of d dimensions. Namely, the probability of a sample to originate from the $j^{\text {th }}$ Gaussian is $\operatorname{Pr}\left[c_{i}=j\right]=p_{j}$. The points in the j th MVN are generated using $M V N\left(\mu_{j}, \epsilon I\right)$, where $\mu_{j} \in \mathbb{R}^{d}$ and I is the identity $d \times d$ matrix. Therefore, the density function of the observation x_{i} given that it originates from the $j^{\text {th }}$ Gaussian is:

$$
f_{j}\left(x_{i}\right)=\frac{1}{(\sqrt{2 \pi \epsilon})^{d}} e^{-\frac{1}{2 \epsilon^{2}}\left\|x_{i}-\mu_{j}\right\|^{2}}
$$

Therefore, our model is $\theta=\left(\left\{p_{j}\right\},\left\{\mu_{j}\right\}\right)$.
We set the $a_{i, j}^{t}$ as follows

$$
a_{i, j}^{t}=\frac{p_{j}^{t} f_{j}^{t}\left(x_{i}\right)}{\sum_{r=1}^{k} p_{r}^{t} f_{r}^{t}\left(x_{i}\right)}
$$

Note that the values of the parameters $\left\{\mu_{j}^{t}\right\}$ (which are given at the E-Step, as computed by the M-Step of the preceeding iteration) appear in $f_{j}^{t}\left(x_{i}\right)$ - this is actually the meaning of the notation t in $f_{j}^{t}\left(x_{i}\right)$.

In the E-step we therefore have

$$
Q\left(\theta \mid \theta^{t}\right)=Q\left(\left(\left\{p_{j}\right\},\left\{\mu_{j}\right\}\right) \mid \theta^{t}\right)=\sum_{i=1}^{n} \sum_{j=1}^{k} a_{i, j}^{t}\left(\log p_{j}+\text { const }-\frac{1}{2 \epsilon^{2}}\left\|x_{i}-\mu_{j}\right\|^{2}\right)
$$

In the M-step we can separately maximize p^{t+1} and μ^{t+1}.

$$
\begin{aligned}
p^{t+1} & =\arg \max _{p} \sum_{i=1}^{n} \sum_{j=1}^{k} a_{i, j}^{t} \log p_{j} \\
& =\arg \max _{p} \sum_{j=1}^{k}\left(\sum_{i=1}^{n} a_{i, j}^{t}\right) \log p_{j}
\end{aligned}
$$

Recall that we have the constraint that $\sum_{j=1}^{k} p_{j}=1$. As we saw a few times, the maximizer is,

$$
p_{j}^{t+1}=\frac{\sum_{i=1}^{n} a_{i, j}^{t}}{\sum_{j=1}^{k} \sum_{i=1}^{n} a_{i, j}^{t}}=\frac{\sum_{i=1}^{n} a_{i, j}^{t}}{n}
$$

For the values of μ^{t+1} we have

$$
\begin{aligned}
\mu^{t+1} & =\arg \max _{\mu} \sum_{i=1}^{n} \sum_{j=1}^{k}-\frac{1}{2 \epsilon^{2}}\left\|x_{i}-\mu_{j}\right\|^{2} \\
& =\arg \min _{\mu} \sum_{i=1}^{n} \sum_{j=1}^{k}\left\|x_{i}-\mu_{j}\right\|^{2}
\end{aligned}
$$

As we saw in the k-means, the minimizer is,

$$
\mu_{j}^{t+1}=\frac{\sum_{i=1}^{n} a_{i, j}^{t} x_{i}}{\sum_{i=1}^{n} a_{i, j}^{t}}
$$

In the next recitation we will review the connection of this setting to the K-means algorithm and the related interpretation of the ϵI covariance matrix.

