
Introduction to Machine Learning Fall Semester, 2013

Recitation 4: November 3
Lecturer: Mariano Schain Scribe: ym

4.1 Outline

The recitation reviewed first the lecture on Bayesian inference, discussing maximum like-
lihood, and EM for mixture of Gaussian. (The material is in the scribe of the previous
recitation.)

The second part is concern with the PAC model, deriving a sample bound for rectangles.

4.2 Learning Rectangles

This part is identical to the lecture, up to the analysis, and is given for com-
pleteness

Suppose we want to predict what is a ’typical person’. Our input is a sample of different
descriptions of people based on their height and weight and their label: whether it is a typical
person (’+’) or not (’-’). Let H be our hypothesis class. In our example, H will be the set of
all possible rectangles on a two-dimensional plane which are axis-aligned (not rotated). One
example of hypothesis h ∈ H can be: mark a person which denotes as (height, weight) to be
a typical one (’+’) if its description is in the range of:

1.60 ≤ height ≤ 1.90, 60 ≤ weight ≤ 90

Assuming the real target function is also rectangle (This assumption will be inferred later
on). Our goal is to find the best rectangle ’R′’ that approximates the real rectangle target
R. In general, we will try to learn an accurate predictor which will optimize our interests.

This learning model is different than the Bayesian inference where we assumed that the
underlying distribution has a specific form and our goal is to estimate this distribution. In
PAC, we don’t know the underlying probability of the samples. Here, the typical people dis-
tribution is unknown and finding the common distribution of heights and weight is impossible
without any knowledge about it.

Generally, in the PAC model, we won’t impose any assumptions on the underlying dis-
tribution of the data other than that such a distribution exists and the samples are indepen-
dently and identically distributed (i.i.d) according to the same distribution. If we wouldn’t,
and the samples were taken from different distribution than the data then we wouldn’t have
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Figure 4.1: A rectangle with positive and negative examples

any reason to assume that we will be successful. This assumption gives us hope that what we
learn based on the training set, gives good results that are close to the real target function.

The learning problem we described can be viewed as follows:

• Goal: Learn rectangle R.

• Input: Examples based on data set and their label: 〈(x, y),+/−〉.

• Output: R′, a good approximation rectangle of the real target rectangle R. (An
example of R′, see Figure 4.1)

4.3 A Good Hypothesis

Our goal is to find a hypothesis that will have a small error rate, smaller than a defined ε.
Let R∆R′ be the error of R′ in respect to the real target rectangle R. This can be defined
by two separate areas: (R−R′) ∪ (R′ −R) (where (R−R′) are false negative and (R′ −R)
are false positive) as shown in Figure 4.2.

Then, our goal can be defined as to find R′ with probability of at least 1− δ (confidence):

Pr[error] = D(R∆R′) ≤ ε

Assuming that R ∈ H is the real target function.

4.4 Learning Strategy

Let S = {〈(x1, y1), b1〉, ..., 〈(xm, ym), bm〉} be the sample data. Intuitive, we would like a
rectangle that will be consistent, i.e., no error on the sample data. This is possible since we
assumed that there exists a rectangle that labels correctly the data (the target rectangle R).
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Figure 4.2: R and R′ areas including two different error spaces. In our example, since R′ ⊆ R
there exists only error of (R−R′).

Figure 4.3: The smallest Rmin (dashed line) and largest Rmax (dotted line) rectangles border
the rectangles which are consistent with the examples. The area between them represents
the error region.
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Figure 4.4: Breaking up the error into four rectangular strips T ′1, ..., T
′
4

We can choose any rectangle varies from the minimal size (Rmin) up to the maximize size
(Rmax) because it is consistent with the sample data, as shown in Figure 4.3. We will show
later, that it doesn’t matter which one of these rectangles the algorithm returns.

The strategy A we will try is to request a ”sufficiently large” number of m examples,
to choose the hypothesis rectangle R′ that is the tightest fit to the positive examples
(R′ = Rmin). That can be done by using four positive points indicating the left-most,right-
most,down-most,up-most points in the sample data that are positive.

4.5 Sample Size

This is the main addition to what was presented in the lecture
In this section, we try to find what is a “sufficiently large” number of examples that

is needed to learn a good hypothesis. For that, we will fix our accuracy and confidence
parameters (ε, δ), and the strategy A. We will show that for any distribution D, we can
assert sample size m that with high confidence (that is, probability at least 1 − δ), the
returned rectangle R′ from strategy A (i.e. the tightest fit rectangle) has an error of at most
ε.

We will be aware of the fact that R′ ⊆ R and we construct T ′1, .., T
′
4 areas that will

indicate the error area, as defined in Figure 4.4. That is, R∆R′ = ∪T ′i .
If the distribution of having each T ′1, ..., T

′
4 is D(T ′i ) ≤ 1

4
ε, then the error rate of R′ is

at most: Pr[error] = D(R∆R′) = D(∪T ′i ) ≤
∑4

i=1
ε
4

= ε This analysis is incorrect because
it depends on the strip T ′i that is constructed by the returned R′ from the strategy A after
seeing the sample. Because the sample has already been seen, the event D(T ′i ) <

ε
4

lost its
randomness and in order to talk about it (its probability), we need to create an event which
do not depend on the sample and use it in the proof.
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Figure 4.5: Adjusting strip size to have a weight of at most ε according to the real target
function R. The strips T ′i ⊆ Ti surrounding the inner rectangle R′ = Rmin apart from the
outer rectangle R.

A better construction will depend only on the real target rectangle R. We will construct
strips T1, .., T4 such that ∀i D(Ti) ≤ 1

4
ε (Figure 4.5). From the construction we can see that

Ti is independent of the sample and of R′. Note that we cannot certainly find the Ti but we
can be sure that such Ti exists.

We would want to have ∀i T ′i ⊆ Ti. If that is the case, we obtained our requirement since

Pr[error] = D(R∆R′) = D(∪T ′i ) ≤ D(∪Ti) ≤ ε

From the construction, if there is at least one sampled point that resides in Ti it implies that
T ′i ⊆ Ti. This is true, since the rectangle from strategy A must include all sampled positive
points in R. To achieve that we can ask: what is the probability of having a bad event,
that is, what is the probability that we didn’t receive points from the sample data that are
located on the constructive strips, i.e., Ti. Formally,

Pr[error > ε] = Pr[∃i = 1..4 ∀(x, y) ∈ S, (x, y) /∈ Ti]

By definition of Ti,

Pr[x /∈ Ti] = 1− ε
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Since our sample data is i.i.d from distribution D:

Pr[∀(x, y) ∈ S, (x, y) /∈ T1] = (1− ε

4
)m

The same analysis holds on each Ti strip. Hence, we get that on the entire region the error
would not exceed the sum of probabilities for each of the strips. That is,

Pr[error > ε] ≤ 4(1− ε

4
)m

From the inequality (1− x) ≤ e−x, we obtain:

Pr[error > ε] ≤ 4(1− ε

4
)m ≤ 4e−

ε
4
m < δ

That is, if we want to have accuracy ε and confidence of at least 1 − δ, we have to choose
the sample size m to satisfy:

4e−
ε
4
m < δ <=> m >

4

ε
ln

4

δ

For this strategy A, and for every small (ε, δ) we like, we got the sample size that is
needed for having a good learner.

4.5.1 Remarks

1. The analysis holds for any fixed probability distribution D, we only required that the
sample points are i.i.d from distribution D to obtain our bound.

2. The minimal sample size m(ε, δ) behaves as we might expect. One might want to have
better accuracy by decreasing ε or greater confidence by decreasing δ — our algorithm
requires more examples to meet those requirements. There is a stronger dependence
in ε.

3. The parameter ε gives the degree of accuracy that we want to achieve. It determines
what is a good hypothesis for achieving a good approximation in respect to the target
function. In our example, the accuracy determines which of our hypothesis rectangles
are good enough in respect to the real rectangle target. We pay attention that the
accuracy does not depend on the data distribution.

4. The parameter δ gives the degree of confidence on having a good learner. Meaning,
how sure are we that we’ve reached that level of accuracy. This can be related on, how
typical the given sample data reflects the true distribution. Again, it does not depend
on the data distribution.
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Figure 4.6: Two cases depending on the sample size

5. An example of learning, we might have cases as shown in Figure 4.6, where the dis-
tribution D gives large weights to particular regions of the plain, creating a distorted
image of the rectangle. In any case, under those conditions, since the learner is tested
on the same distribution D, and this distribution has small error between R and R′,
the rectangle R′ will be a good hypothesis (in respect to ε, δ).

6. The strategy A that we defined is efficient: In computational view, the only need is
to search for the max and min points that defines our tightest-fit rectangle. In sample
data size view, the number of examples that is required for achieving accuracy ε with
confidence 1− δ is polynomial in 1

ε
and ln1

δ
.

7. In this example, as opposed to the Bayesian approach, we haven’t been trying to model
D or to guess which rectangle is more likely (prior). We have separated the distribution
D from the target function (rectangle R), and directly try to predict hypothesis for
this function.


