
Introduction to Machine Learning Fall Semester, 2013

Recitation 5: November 10
Lecturer: Mariano Schain Scribe: ym

5.1 Perceptron - approximately maximizing margins.

We saw that the Perceptron algorithm makes at most 1/γ2 mistakes on any sequence of
examples that is linearly-separable by margin γ (i.e., any sequence for which there exists a
unit-length vector w∗ such that all examples x satisfy `(x)(w∗ · x)/||x|| ≥ γ, where `(x) ∈
{−1, 1} is the label of x).

Figure 5.1: Attempting to obtain a good separator by defining a “penalty margin”

There can be many possible separating hyperplanes, however - some are much better
than others. Suppose we are handed a set of examples S and we want to actually find a
large-margin separator for them. One approach is to directly solve for the maximum-margin
separator using convex programming (which is what is done in the SVM algorithm, and will
be learn later in the course). However, if we only need to approximately maximize the margin,
then another approach is to use Perceptron. In particular, suppose we cycle through the data
using the Perceptron algorithm, updating not only on mistakes, but also on examples x that

1

2 Lecture 5: November 10

our current hypothesis gets correct by margin less than γ
2

(see illustration in Figure 5.1).
Assuming our data is separable by margin γ, then we can show that this is guaranteed to
halt in a number of rounds that is polynomial in 1

γ
. (In fact, we can replace γ

2
with (1− ε)γ

and have bounds that are polynomial in 1
εγ

.)

The Margin Perceptron Algorithm(γ):

1. Assume again that all examples are normalized to have Euclidean length 1. Initialize
w1 = c∗(x)x, where x is the first example seen and initialize t to 1, and c∗(x) is again
the label of x.

2. Predict positive if wt·x
||wt|| ≥

γ
2
, predict negative if wt·x

||wt|| ≤ −
γ
2
, and consider an example

to be a margin mistake when wt·x
||wt|| ∈ (−γ

2
, γ
2
).

3. On a mistake (incorrect prediction or margin mistake), update as in the standard
Perceptron algorithm: wt+1 ← wt + c∗(x)x; t← t+ 1.

Theorem 5.1 Let S be a sequence of labeled examples consistent with a linear threshold
function w∗ · x ≥ 0, where w∗ is a unit-length vector, and let

γ = min
x∈S

|w∗ · x|
||x||

.

Then the number of mistakes (including margin mistakes) made by Margin Perceptron(γ) on
S is at most 12

γ2
.

Proof: The argument for this new algorithm follows the same lines as the argument for
the original Perceptron algorithm.

As before, we can show that each update increases wt ·w∗ by at least γ:
wt+1 ·w∗ = (wt ± c∗(x)x) ·w∗ = wt ·w∗ ± c∗(x)x ·w∗ ≥ wt ·w∗ + γ, because γ is chosen to
be smaller than |xw∗|, and c∗(x) fixes the sign.
Note that if x is a margin error, | wt·x

||w||t | ≤
γ
2
, but still |w∗ · x| ≥ γ.

What is now a little more complicated is to bound the increase in ||wt||. For the original
algorithm, we had: ||wt+1||2 ≤ ||wt||2 + 1. Using a similar method to the one we use below,
we could have actually shown ||wt+1|| ≤ ||wt||+ 1

2||wt|| .
For the Margin Perceptron algorithm, we can show instead:

||wt+1|| ≤ ||wt||+
1

2||wt||
+
γ

2
. (5.1)

To see this note that:

||wt+1||2 = ||wt||2 + 2c∗(x)wt · x + ||x||2 = ||wt||2
(

1 +
2c∗(x)

||wt||
wt · x
||wt||

+
1

||wt||2

)

5.1. PERCEPTRON - APPROXIMATELY MAXIMIZING MARGINS. 3

Using the inequality
√

1 + α ≤ 1 + α
2

together with the fact c∗(x)wt·x
||wt|| ≤

γ
2

(since wt made

a mistake on x) we get the desired upper bound on ||wt+1||, namely:

||wt+1|| = ||wt||

√
1 +

2c∗(x)

||wt||
wtx

||wt||
+

1

||wt||2
≤ ||wt||

√
1 +

2

||wt||
γ

2
+

1

||wt||2

≤ ||wt||(1 +

γ
||wt|| + 1

||wt||2

2
)⇒ ||wt+1|| ≤ ||wt||+

1

2||wt||
+
γ

2

(notice we selected (γ
||wt|| + 1

||wt||2) as α, and that c∗(x) ≤ 1)

Note that (5.1) implies that if ||wt|| ≥ 2
γ

then ||wt+1|| ≤ ||wt|| + 3
4
γ. Given that, it is

easy to see that after M updates we have:

||wM+1|| ≤ 1 +
2

γ
+

3

4
Mγ.

As before, γM ≤ ||wM+1||. Solving Mγ ≤ 1 + 2
γ

+ 3
4
Mγ we get M ≤ 12

γ2
, as desired. �

Comment: We will see later on why it is preferable to take a hyperplane with a large
margin. Here we saw how the Perceptron algorithm can be modified so that its result
approaches the best possible margin. We accomplished this using γ

2
, but we might as well

have chosen (1− ε)γ.

