Introduction to Machine Learning
 Recitation 6: November 17

Fall Semester, 2013

Lecturer: Mariano Schain
Scribe: ym

6.1 SVM optimization

In the lecture we saw the following optimization problem, for a maximum margin classifier.

$$
\begin{aligned}
& \min _{w, b} \frac{1}{2} w^{t} w \\
& \text { s.t. } y_{n}\left(w^{t} x_{n}+b\right) \geq 1 \quad \forall n=1, \ldots, N
\end{aligned}
$$

where $w \in \mathbb{R}^{d}$ is the weight vector, $b \in \mathbb{R}$ is the bias, and $\left(x_{n}, y_{n}\right)$ are the examples and $x_{n} \in \mathbb{R}^{d}$ and $y_{n} \in\{+1,-1\}$.

The first step is to write the Lagrangian. In general, for a program

$$
\begin{aligned}
& \min f(X) \\
& \text { s.t. } g_{i}(x) \leq 0 \forall i=1, \ldots, N
\end{aligned}
$$

the Lagrangian is

$$
L(x, \alpha)=f(x)+\sum_{i=1}^{N} \alpha_{i} g_{i}(x)
$$

where α are called the Lagrangian multipliers.
For our SVM program we get

$$
L(w, b, \alpha)=\frac{1}{2} w^{t} w-\sum_{n=1}^{N} \alpha_{n}\left(y_{n}\left(w^{t} x_{n}+b\right)-1\right)
$$

We now take the derivative of L and equate it with zero to minimize over w and b.

$$
\nabla_{w} L=w-\sum_{n=1}^{N} \alpha_{n} y_{n} x_{n}=0 \quad \Longrightarrow \quad w=\sum_{n=1}^{N} \alpha_{n} y_{n} x_{n}
$$

this give us a way to compute w given α. We call this the w-constraint. For b we have

$$
\frac{d}{d b} L=-\sum_{n=1}^{N} \alpha_{n} y_{n}=0 \quad \Longrightarrow \quad \alpha_{n} y_{n}=0
$$

We call this the b-constraint.
Plugging the constraints back in L we have

$$
\begin{aligned}
L(w, b, \alpha) & =\frac{1}{2} w^{t} w-w^{t}(\underbrace{\left.\sum_{n=1}^{N} \alpha_{n} y_{n} x_{n}\right)}_{w}-b \underbrace{\left(\sum_{n=1}^{N} \alpha_{n} y_{n}\right)}_{0}+\left(\sum_{n=1}^{N} \alpha_{n}\right) \\
& =-\frac{1}{2} w^{t} w+\left(\sum_{n=1}^{N} \alpha_{n}\right) \\
& =-\frac{1}{2}\left(\sum_{i=1}^{N} \alpha_{i} y_{i} x_{i}\right)^{t}\left(\sum_{j=1}^{N} \alpha_{j} y_{j} x_{j}\right)+\left(\sum_{n=1}^{N} \alpha_{n}\right) \\
& =-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{j} y_{i} x_{i}^{t} x_{j}+\left(\sum_{n=1}^{N} \alpha_{n}\right)
\end{aligned}
$$

where we have the constraints $\sum_{n=1}^{N} \alpha_{n} y_{n}=0$ and $\forall n$ we have $\alpha_{n} \geq 0$.
Formally, the dual problem is

$$
\begin{array}{rr}
\max _{\alpha} L(w, b, \alpha)=\min _{\alpha} & \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{j} y_{i} x_{i}^{t} x_{j}-\left(\sum_{n=1}^{N} \alpha_{n}\right) \\
\text { s.t. } & \sum_{n=1}^{N} \alpha_{n} y_{n}=0 \\
\forall n \alpha_{n} \geq 0
\end{array}
$$

6.2 Unrealizable case

We add slack variables ξ_{n} to ensure feasibility. We have,

$$
\begin{array}{ll}
\min _{w, b, \xi} & \frac{1}{2} w^{t} w+C \sum_{n=1}^{N} \xi_{n} \\
\text { s.t. } & y_{n}\left(w^{t} x_{n}+b\right) \geq 1-\xi_{n} \quad \forall n=1, \ldots, N \quad \forall n \quad \xi_{n} \geq 0
\end{array}
$$

We can now write the Lagrangian

$$
L(w, b, \xi, \alpha, r)=\frac{1}{2} w^{t} w+C \sum_{n=1}^{N} \xi_{n}-\sum_{n=1}^{N} \alpha_{n}\left(y_{n}\left(w^{t} x_{n}+b\right)-1+\xi_{n}\right)-\sum_{n=1}^{N} r_{n} \xi_{n}
$$

We now take the derivatives

$$
\nabla_{w} L=w-\sum_{n=1}^{N} \alpha_{n} y_{n} x_{n}=0 \quad \Longrightarrow \quad w=\sum_{n=1}^{N} \alpha_{n} y_{n} x_{n}
$$

identically as before. For b we have

$$
\frac{d}{d b} L=-\sum_{n=1}^{N} \alpha_{n} y_{n}=0 \quad \Longrightarrow \quad \alpha_{n} y_{n}=0
$$

also as before.
For ξ_{n} we have

$$
\frac{d}{d \xi_{n}} L=C-\alpha_{n}-r_{n}=0 \quad \Longrightarrow \quad \alpha_{n}=C-r_{n}
$$

Substituting the constraints in L we get

$$
\begin{aligned}
L(w, b, \alpha) & =\frac{1}{2} w^{t} w-w^{t}(\underbrace{\left.\sum_{n=1}^{N} \alpha_{n} y_{n} x_{n}\right)}_{w}-b(\underbrace{\left.\sum_{n=1}^{N} \alpha_{n} y_{n}\right)}_{0}+\left(\sum_{n=1}^{N} \alpha_{n}\right)+\sum_{n=1}^{N} \xi_{n} \underbrace{\left(C-\alpha_{n}-r_{n}\right)}_{0} \\
& =-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{j} y_{i} x_{i}^{t} x_{j}+\left(\sum_{n=1}^{N} \alpha_{n}\right)
\end{aligned}
$$

identically as before. The only difference is that now we have two additional constraints, $r_{n} \geq 0$ and $\alpha_{n}=C-r_{n}$. Since r_{n} does now appear in the optimization, we can drop it, and join then two constraints to $\alpha_{n} \leq C$. (For any solution of α_{n} we can set $r_{n}=C-\alpha_{n}$.)

Note that when we have an error in classification or in the margin, then $\xi_{n}>0$ and therefore $r_{n}=0$, which implies that $\alpha_{n}=C$.

For $C>\alpha_{n}>0$ we have $r_{n}>0$ and therefore $\xi_{n}=0$. Since $\alpha_{n}>0$ this implies that it is a support vector.

For $\alpha_{n}=0$ we have $r_{n}=C$ and therefore $\xi_{n}=0$ and since $\alpha_{n}=0$ this is not an support vector.

6.3 Sequential Minimization Optimization (SMO)

For a convex program, we can solve it by doing a gradient ascent, simply choosing a single coordinate and optimizing the value. In our case, since we have a constraint that $\sum_{n=1}^{N} \alpha_{n} y_{n}=0$, relaxing a single variable will be forced back to the same solution. For this we need to relax at least two variables.

Without loss of generality assume we selected α_{1} and α_{2}. From the constraint we have,

$$
\alpha_{1} y_{1}+\alpha_{2} y_{2}=-\sum_{i=3}^{N} \alpha_{i} y_{i}=F
$$

where F is some constant (since we keep α_{i} for $i>3$ fixed). Now we can set

$$
\alpha_{1}=\left(F-\alpha_{2} y_{2}\right) y_{1}
$$

This implies that in the maximization we have a single variable α_{2} we are maximizing over. The weight function is now

$$
w\left(\left(F-\alpha_{2} y_{2}\right) y_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{N}\right)
$$

which is a quadratic function in α_{2}. (Recall that we keep α_{i} for $i>3$ fixed).
We can now maximize it as an unconstraint quadratic form and find a maximizer $\bar{\alpha}_{2}$. We now need to consider the constraints

$$
0 \leq \alpha_{2} \leq C
$$

and

$$
0 \leq\left(F-\alpha_{2} y_{2}\right) y_{1}=\alpha_{1} \leq C
$$

the two constraints give a feasible range $[L, H]$ of α_{2}. We can now test the unconstraint solution $\bar{\alpha}_{2}$ to derive the optimal solution α_{2}^{*}, as follows,

1. If $\bar{\alpha}_{2} \in[L, H]$ then $\alpha_{2}^{*}=\bar{\alpha}_{2}$.
2. If $\bar{\alpha}_{2}<L<H$ then $\alpha_{2}^{*}=L$.
3. If $L<H<\bar{\alpha}_{2}$ then $\alpha_{2}^{*}=H$.
