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6.1 SVM optimization

In the lecture we saw the following optimization problem, for a maximum margin classifier.

min
w,b

1

2
wtw

s.t. yn(wtxn + b) ≥ 1 ∀n = 1, . . . , N

where w ∈ Rd is the weight vector, b ∈ R is the bias, and (xn, yn) are the examples and
xn ∈ Rd and yn ∈ {+1,−1}.

The first step is to write the Lagrangian. In general, for a program

minf(X)

s.t. gi(x) ≤ 0∀i = 1, . . . , N

the Lagrangian is

L(x, α) = f(x) +
N∑
i=1

αigi(x)

where α are called the Lagrangian multipliers.
For our SVM program we get

L(w, b, α) =
1

2
wtw −

N∑
n=1

αn(yn(wtxn + b)− 1)

We now take the derivative of L and equate it with zero to minimize over w and b.

∇wL = w −
N∑
n=1

αnynxn = 0 =⇒ w =
N∑
n=1

αnynxn

this give us a way to compute w given α. We call this the w-constraint. For b we have

d

db
L = −

N∑
n=1

αnyn = 0 =⇒ αnyn = 0
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We call this the b-constraint.
Plugging the constraints back in L we have

L(w, b, α) =
1

2
wtw − wt (

N∑
n=1

αnynxn)︸ ︷︷ ︸
w

−b (
N∑
n=1

αnyn)︸ ︷︷ ︸
0

+(
N∑
n=1

αn)

=− 1

2
wtw + (

N∑
n=1

αn)

=− 1

2
(
N∑
i=1

αiyixi)
t(

N∑
j=1

αjyjxj) + (
N∑
n=1

αn)

=− 1

2

N∑
i=1

N∑
j=1

αiαjyjyix
t
ixj + (

N∑
n=1

αn)

where we have the constraints
∑N

n=1 αnyn = 0 and ∀n we have αn ≥ 0.
Formally, the dual problem is

max
α

L(w, b, α) = min
α

1

2

N∑
i=1

N∑
j=1

αiαjyjyix
t
ixj − (

N∑
n=1

αn)

s.t.
N∑
n=1

αnyn = 0

∀n αn ≥ 0

6.2 Unrealizable case

We add slack variables ξn to ensure feasibility. We have,

min
w,b,ξ

1

2
wtw + C

N∑
n=1

ξn

s.t. yn(wtxn + b) ≥ 1− ξn ∀n = 1, . . . , N ∀n ξn ≥ 0

We can now write the Lagrangian

L(w, b, ξ, α, r) =
1

2
wtw + C

N∑
n=1

ξn −
N∑
n=1

αn(yn(wtxn + b)− 1 + ξn)−
N∑
n=1

rnξn
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We now take the derivatives

∇wL = w −
N∑
n=1

αnynxn = 0 =⇒ w =
N∑
n=1

αnynxn

identically as before. For b we have

d

db
L = −

N∑
n=1

αnyn = 0 =⇒ αnyn = 0

also as before.
For ξn we have

d

dξn
L = C − αn − rn = 0 =⇒ αn = C − rn

Substituting the constraints in L we get

L(w, b, α) =
1

2
wtw − wt (

N∑
n=1

αnynxn)︸ ︷︷ ︸
w

−b (
N∑
n=1

αnyn)︸ ︷︷ ︸
0

+(
N∑
n=1

αn) +
N∑
n=1

ξn (C − αn − rn)︸ ︷︷ ︸
0

=− 1

2

N∑
i=1

N∑
j=1

αiαjyjyix
t
ixj + (

N∑
n=1

αn)

identically as before. The only difference is that now we have two additional constraints,
rn ≥ 0 and αn = C − rn. Since rn does now appear in the optimization, we can drop it, and
join then two constraints to αn ≤ C. (For any solution of αn we can set rn = C − αn.)

Note that when we have an error in classification or in the margin, then ξn > 0 and
therefore rn = 0, which implies that αn = C.

For C > αn > 0 we have rn > 0 and therefore ξn = 0. Since αn > 0 this implies that it
is a support vector.

For αn = 0 we have rn = C and therefore ξn = 0 and since αn = 0 this is not an support
vector.

6.3 Sequential Minimization Optimization (SMO)

For a convex program, we can solve it by doing a gradient ascent, simply choosing a sin-
gle coordinate and optimizing the value. In our case, since we have a constraint that∑N

n=1 αnyn = 0, relaxing a single variable will be forced back to the same solution. For
this we need to relax at least two variables.
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Without loss of generality assume we selected α1 and α2. From the constraint we have,

α1y1 + α2y2 = −
N∑
i=3

αiyi = F

where F is some constant (since we keep αi for i > 3 fixed). Now we can set

α1 = (F − α2y2)y1

This implies that in the maximization we have a single variable α2 we are maximizing over.
The weight function is now

w((F − α2y2)y1, α2, α3, . . . , αN)

which is a quadratic function in α2. (Recall that we keep αi for i > 3 fixed).
We can now maximize it as an unconstraint quadratic form and find a maximizer ᾱ2. We

now need to consider the constraints

0 ≤ α2 ≤ C

and
0 ≤ (F − α2y2)y1 = α1 ≤ C

the two constraints give a feasible range [L,H] of α2. We can now test the unconstraint
solution ᾱ2 to derive the optimal solution α∗

2, as follows,

1. If ᾱ2 ∈ [L,H] then α∗
2 = ᾱ2.

2. If ᾱ2 < L < H then α∗
2 = L.

3. If L < H < ᾱ2 then α∗
2 = H.


