Introduction to Machine Learning Fall Semester, 2013

Recitation 9: December 15

Lecturer: Mariano Schain Scribe: ym

9.1 Adaboost - Continue

We will finish something that we did not have a chance to complete last week.

We would like to consider a very simple class of weak learners, where their predictions
are independent. Our goal has two folds: We like to see that the complexity bound we get
(in terms of the required number of iterations to achieve a certain accuracy) is very similar
to AdaBoost, showing that the number of iteration in AdaBoost cannot be reduced. Also, in
this simple setting the intuitive majority rule would do the work, in contrast to the general
case where we needed to continuously modify the distribution.

Model Each time ¢ we get a new weak learner h;, such that for any valid (x,y) we have
Pr[h(z) = y] = 0.54+~. Note that there is no need to have a distribution D, since we require
it to hold for each x independently.

We will define, given the h;, a majority classifier,

H(x) = sign()_ hi())

Our goal is to derive a bound on the error of H as a function of v and T

An error of H, i.e., H(x;) # y;, whenever the number of correct classification by the T
hypotheses h; is less than 7'/2. Our stochastic assumption implies that we can compute the
error for each x, independently. The error bound would be derived using a Chernoff bound.
Recall, that given n random variables X, ,..., X,, which are i.i.d., we have that

Pr[z Xi>p+A<e ™" and Pr[z Xi<p—N<em
i=1 1=1
where p = E[)"1" | X;] = nE[X]].
In our case, the expected number of correct predictions is p = T(0.5+~) = T/2 +~T.
Let X; be a random variable indicating whether h¢(z;) is correct, i.e., Xy = Ip,(z,)=y,- This
implies that,

T T
Pr(H(z;) #yi] =Pr[d X, <T/2] =Pr[> X, <p—7T]<e "

2 Lecture 9: December 15

9.2 Linear Regression

Our basic model is a linear function, i.e., hg(x) = 0"z, where 6 are the parameters we like to
learn for the linear function. The examples are (z;,v;). We can model this by a matrix

X = : : : = Xt ... Xxd
where X7 are the values of attribute j. The labels are
Y1

Ym

We would like to find the parameter # that minimizes the loss, namely

. o N 0)\)\2
min E_l loss(hg, (xs,1:)) = min E_l (ho(x;) — yi)) assume square loss
min E_l(T —Yi)) inear predictions

= min | X0~ V3
Alternatively, we have that
X0 =0, X"+ +0,X°

For example, if 1 = (1,2), 2 = (3,4), z3 = (5,6), let 6 = (a,b).

1 2 a-+2b 1 2
x0t=1[3 4 (Z): 3a+4b | =al 3 | +0| 4
5 6 5a + 6b 5 6

Therefore, we are looking for the linear combination (defined by 6) of the columns of X
that is closest to y.

9.2.1 feature normalization

Unlike the nearest neighbor (NN) we will show that feature normalization (more precisely,
scaling) does not influence the regression.

9.2. LINEAR REGRESSION 3

Let 0* be the value of 8 which minimized the square error. The minimizer can be viewed

Assume we scale each coordinate j by some constant a; (therby, 'normalizing’ the feature
7). This implies that the new feature vector for j is XJ = a;X7. We are looking for the
solution of the new system, denoted by 6*.

0* = argmin | X0' — Y||?
o

Note that
X0 =10, X + - + a0, X

This again is a linear combination of the columns of X and therefore we will find the same
combination closest to y as before, implying that 9~;* = @;0;. Since we have no restriction
on 0 essentially we recover the same solution and have the same predictions (although the
specific values of 8* will be scaled accordingly - by the same scaling applied to the features).

Challenge Question: What will happen in Ridge and Lasso regression?

9.2.2 Logistic regression

Assume we need to predict a Boolean outcome y € {0,1}. While this is a classical classi-
fication setting, we can still use regression. The problem is that the linear function of the
regression can map values to be larger than 1 or below 0. we like to map any real number 2
to a value in [0, 1]. One such function is g(z) = 1+ifz'

We will now give a maximum likelihood interpretation and use it to learn 6.

ho(z) = Prly = 1|z; 0] = g(0'x)
We will learn 6 using ML model. The probabilities in the model will be
Prly|z; 0] = (ho())"(1 — ho(x))' ™"

The likelihood function would be

LOIX,Y) = Pr[Y|X;0) = [[(ho(:))" (1 — ho(x:))' ¥

i=1

The log likelihood is

(ox,Y) = Zy log(hg(xi)) + (1 — y:)log(1 — he(x:))

4 Lecture 9: December 15

We now present an online model for this. Consider sample (z;,y;). Let

F(0) = y;log(hg(x;)) + (1 — y;) log(1 — hy(z;))
Maximizing over § we consider the gradient in the direction of the ;' feature:

dF(H) Y
dej N he(fﬁl

)gl(etfﬁi)%‘ - ﬁglwt%‘)%‘

Computing the derivative of g we have

e * 1 e *
(14+e2)2 14e* 1+e=

9'(z) =

Therefore we have

ar Vi -y
dd; — g(6',) 1—g(0"z:)
=yi(1 — g(0'zi)zi; — (1 — y;)g(0' i) 2y
=(yi — g(0'x:))2s

g(0"2;) (1 — g(0"w)ai; — 9(0'z;)(1 — g(0'x;))xy;

The update of § at the k*8i iteration is (moving at the direction of the gradient, since we
maximize the log-likelyhood),

0" = 08 + alyr — hor (1)),

Note that this has the same form as the update for linear regression (however the updates
are essentially different sine the underlying hy are different).

