Decision Trees and Ensemble Methods

Decision Trees - Boolean

Decision Trees Continuous

Decision Tree Pruning

Problem Statement

- We like to output small decision tree
 - Model Selection
- The building is done until zero training error
- Option I : Stop Early
 - Small decrease in index function
 - Cons: may miss structure
- Option 2: Prune after building.

Pruning

- Input: tree *T*
- Sample: S
- Output: Tree T'
- Basic Pruning: T' is a sub-tree of T
 - Can only replace inner nodes by leaves
- More advanced:
 - Replace an inner node by one of its children

Reduced Error Pruning

- Split the sample to two part S₁ and S₂
- Use S_1 to build a tree.
- Use S_2 to decide when to prune.
- Process every inner node v
 - After all its children have been processed
 - Compute the observed error of T_v and possible leaf(v)
 - If leaf(v) has less errors replace T_v by leaf(v)
- Alternative: require the difference to be statistically significant
 - Can be theoretically analyzed

Pruning: Model Selection

- Generate DT for each pruning size
 - compute the minimal error pruning
 - At most m different decision-trees
- Select between the prunings
 - Cross Validation
 - Structural Risk Minimization
 - Any other index method

Finding the minimum pruning

- Procedure Compute
- Inputs:
 - k : number of errors
 - T: tree
 - S : sample
- Output:
 - P* : pruned tree
 - Size* : size of P

- Compute(k,T,S,P*,size*)
- IF IsLeaf(T)= TRUE
 - IF *Errors*(T) ≤ k
 - THEN size*=1
 - ELSE size * = ∞
 - $-P^*=T$; return;
- IF $Errors(root(T)) \le k$
 - Size*=1; P*=root(T);
 return;

Procedure compute

- For i = 0 to k DO
 - Call Compute(i, T[0], S₀, P_{i,0}, size_{i,0})
 - Call Compute(k-i, T[1], S₁, P_{i,1}, size_{i,1})
- Size* = minimum {size_{i,0} + size_{i,1} +1}
- $i^* = arg min \{ size_{i,0} + size_{i,1} + 1 \}$
- P* = MakeTree(root(T),P_{i*,0}, P_{i*,1})
- Return
- What is the time complexity?

Cross Validation

- Split the sample S₁ and S₂
- Build a tree using S₁
- Compute the candidate prunings
 - $-P_1, \dots, P_m$
- Select using S₂
 - $-T^*=Arg\ min\ error(P_i,S_2)$
- Output the tree T*
 - Has the smallest error on S_2

SRM

- Build a Tree T using S
- Compute the candidate prunings
 - $-P_1, \dots, P_m$
 - $-k_d$ the size of the pruning with d errors
- Select using the SRM formula

$$\min_{d} \{error(S, T_d) + \sqrt{\frac{k_d}{m}}\}$$

Drawbacks

- Running time
 - Since |T| = O(m)
 - Running time O(m²)
 - Many passes over the data
- Significant drawback for large data sets

More on Pruning

- Considered only leaf replacement
 - Substitute a sub-tree by a leaf
- Other popular alternatives
 - Replace a node by one of its children.
- Reduce error pruning
 - Conceptually similar
- Model selection

Ensemble Methods

Ensemble Methods

- High level idea
 - Generate multiple hypotheses
 - Combine them to a single classifier
- Two important questions
 - How do we generate multiple hypotheses
 - we have only one sample
 - How do we combine the multiple hypotheses
 - Majority, AdaBoost, ...

Rational for Ensemble Methods

Boosting

- Boosting is actually an ensemble method
- Generating different hypotheses:
 - By changing the sample distribution
- Combining hypotheses
 - weighted linear predictor
 - Weights determine when hypo. is selected.

Bagging

- Input: a single learning algorithm #
- How do we generate different Hypotheses
 - sampling
 - with replacement (maintains the statistics)
 - Formally, given a sample S
 - Sub sample S_1, \dots, S_k
 - Run A on S_i to generate h_i
- Combining: Simple majority

Bagging rational: Bias versus Var

- Why is one hypothesis worse than many ?!
- Expected error of h_i
 - identical to all h_i
 - worse than training on all sample
 - smaller sample
 - BIAS

- Variance of the error
 - single hypothesis fluctuates considerably
 - majority of many much more stable
 - More stable → better generalization
 - the training error better reflects the true error

Stacking

- Input:
 - Sample S
 - k algorithms A_i
 - combing algo C
- Run A_i on S generate h_i
- Given h₁, ..., h_k
 - generate new sample
 - $-(x,y) \rightarrow (h_1(x), ..., h_k(x), y)$
 - Run C to generate H
- Output H

- What can be A_i?
- What can be C?

- Bagging:
 - A_i sub-samples
 - C is a majority
- AdaBoost
 - A_i weak hypo time i
 - C weighted majority

Random Forest: motivation

- Decision Trees Bias
 - Decision tree creation is very noisy
 - Depends on particular sample
- Lowering Variance:
 - Averaging over decision trees
- How can we generate different decision trees?
 - Sub-sample the sample
 - Force certain attributes

Random Forest:

- Create K different decision trees:
- Sample:
 - Select a random subsample
 - Practice: 66%
- GOAL:
 - Generate a variety of DT
 - Well correlated with y
- Combining: Majority

- Attributes:
 - In each node select subset
 F of attributes
 - |F|=M
 - Weak learners
 - Select the best attr. in F
- Values of M:
 - M=1: random
 - M=N all attributes
 - regular DT
 - 1 << M << N
 - Subset of attributes

Random Forest: Conclusion

- Benefits:
 - Fast to run
 - Fairly stable outcome
 - Competitive performance
 - Handles missing/partial data

Weaknesses:

- Losses the interpretability
 - of DT
- Many parameters around
- Feature selection could be also a weakness