Generalization Bounds

Overview

- Probably Approximately Correct (PAC) model
- Basic generalization bounds
 - finite hypothesis class
 - infinite hypothesis class
- Model Selection

Good-Turing problem

- Assume you have access to a large data set of words
- Words are drawn i.i.d from some distribution
- You observe a sample S of size m
- QUESTION: what is the probability of the words you did not observe?

Motivating Example (PAC)

- Concept: Average body-size person
- Inputs: for each person:
 - height
 - weight
- Sample: labeled examples of persons
 - label + : average body-size
 - label : not average body-size
- Two dimensional inputs

Motivating Example (PAC)

- Assumption: target concept is a rectangle.
- Goal:
 - Find a rectangle that "approximate" the target.
- Formally:
 - With high probability
 - output a rectangle such that
 - its error is low.

Example (Modeling)

• Assume:

- Fixed distribution over persons.

• Goal:

– Low error with respect to THIS distribution!!!

- How does the distribution look like?
 - Highly complex.
 - Each parameter is not uniform.
 - Highly correlated.

Model Based approach

- First try to model the distribution.
- Given a model of the distribution:
 find an optimal decision rule.

• Bayesian Learning

PAC approach

- Assume that the distribution is fixed.
- Samples are drawn are i.i.d.
 - independent
 - identical
- Concentrate on the decision rule rather than distribution.

PAC Learning

- Task: learn a rectangle from examples.
- Input: point (x,y) and classification + or classifies by a rectangle R
- Goal:
 - in the fewest examples
 - compute R' efficiently
 - R' is a good approximation for R

PAC Learning: Accuracy

- Testing the accuracy of a hypothesis:
 - using the distribution D of examples.
- Error = $\mathbf{R} \Delta \mathbf{R}$ '
- $Pr[Error] = D(Error) = D(R \Delta R')$
- We would like Pr[Error] to be controllable.
- Given a parameter ε:

– Find R' such that $Pr[Error] < \varepsilon$.

PAC Learning: Hypothesis

- Which Rectangle should we choose?
- Latter we show it is not that important.

PAC model: Setting

- A distribution: **D** (unknown)
- Target function: c_t from C - $c_t : X \rightarrow \{0,1\}$
- Hypothesis: h from H $-h: X \rightarrow \{0,1\}$
- Error probability:

 $-\operatorname{error}(h) = \operatorname{Prob}_{D}[h(x) \neq c_{t}(x)]$

• Oracle: $EX(c_t, D)$

PAC Learning: Definition

- C and H are concept classes over X.
- C is PAC learnable by H if
- There Exist an Algorithm A such that:
 - For any distribution **D** over X and c_t in C
 - for every input ε and δ :
 - outputs a hypothesis h in H,
 - while having access to $EX(c_t, D)$
 - with probability 1- δ we have error(h) < ϵ
- Complexities.

PAC: comments

- We only assumed that examples are i.i.d.
- We have two independent parameters:
 - Accuracy **ɛ**
 - Confidence δ
- No assumption about the likelihood of concepts.
 no prior
- Hypothesis is tested on the same distribution as the sample.

Finite Concept class

- Assume C=H and finite.
 realizable case
- *h* is ε -bad if error(*h*)> ε .
- Algorithm:
 - Sample a set S of $m(\varepsilon, \delta)$ examples.
 - Find *h* in *H* which is consistent.
- Algorithm fails if h is ε -bad.

Analysis

- Assume hypothesis g is ε -bad.
- The probability that g is consistent: $-\Pr[g \text{ consistent}] \le (1-\varepsilon)^m < e^{-\varepsilon m}$
- The probability that there exists:
 - -g is ε -bad and consistent:
 - $|H| \Pr[g \text{ consistent and } \epsilon\text{-bad}] \le |H| e^{-\epsilon m}$
- Sample size:
 - $-m > (1/\epsilon) \ln (|H|/\delta)$

PAC: non-realizable case

- What happens if c_t not in H
- Needs to redefine the goal.
- Let h^* in H minimize the error β =error(h^*)
- Goal: find h in H such that

 $-\operatorname{error}(h) \leq \operatorname{error}(h^*) + \varepsilon = \beta + \varepsilon$

- Algorithm ERM
 - Empirical Risk Minimization

Concentration Bounds

- Markov inequality Pr[X > a] < E[X]/a, X>0
- Chebyshev:
 Pr[X > a] < E[X²]/a²
- Chernoff: (X_i are Bernoulli r.v.) Pr[$\Sigma_{i=1,n} X_i > \mu + \lambda$] < exp(- λ^2/n)

Analysis

• For each h in H:

- let obs-error(h) be the error on the sample S.

- Compute the probability that:
 - $-|obs-error(h) error(h)| < \epsilon/2$
 - Chernoff bound: $exp(-(\epsilon/2)^2m)$
- Consider entire H : $|\mathbf{H}| \exp(-(\epsilon/2)^2 \mathbf{m})$
- Sample size

 $-m > (4/\varepsilon^2) \ln (|H|/\delta)$

Correctness

- Assume that for all h in H:
 |obs-error(h) error(h) | < ε/2
- In particular:
 - $\text{ obs-error}(h^*) < \text{error}(h^*) + \epsilon/2$
 - $\operatorname{error}(h) \varepsilon/2 < \operatorname{obs-error}(h)$
- For the output h:
 - obs-error(h) < obs-error(h^{*})
- Conclusion: $error(h) < error(h^*) + \varepsilon$

Example: Learning OR of literals

- Inputs: x_1, \ldots, x_n
- Literals : x_{I}, \overline{x}_{1}
- OR functions: $x_1 \lor \overline{x}_4 \lor x_7$
- Number of functions? **3**ⁿ

ELIM: Algorithm for learning OR

- Keep a list of all literals
- For every example whose classification is 0:
 - Erase all the literals that are 1.
- Example
- Correctness:
 - Our hypothesis h: An OR of our set of literals.
 - Our set of literals includes the target OR literals.
 - Every time h predicts zero: we are correct.
- Sample size: $m > (1/\varepsilon) \ln (3^n/\delta)$

Infinite Concept class

- X=[0,1] and H={ $c_{\theta} | \theta \text{ in } [0,1]$ }
- $c_{\theta}(x) = 0$ iff $x < \theta$
- Assume C=H:

• Which c_{θ} should we choose in [min,max]?

Introduction to Machine Learning

Proof I

- Show that the probability that
 Pr[D([min,max]) > ε] < δ
- Proof: By Contradiction.
 - The probability that x in [min,max] at least ε
 - The probability we do not sample from [min,max]
 - Is $(1-\varepsilon)^m$
 - Needs $m > (1/\varepsilon) \ln (1/\delta)$

What's WRONG ?!

Proof II (correct):

- Let min' be : $D([min',\theta]) = \epsilon/2$
- Let max' be : $D([\theta, max']) = \epsilon/2$
- Goal: Show that with high probability
 - X_{-} in [min', θ] and
 - $-X_{+}$ in [θ ,max']
- In such a case any value in $[x_{,x_{+}}]$ is good.
- Compute sample size!

Non-Feasible case

• Suppose we sample:

- Algorithm:
 - Find the function h with lowest error!

Analysis

- Define: z_i as a $\epsilon/4$ net (w.r.t. D)
- For the optimal h* and our h there are
 - $-z_j$: |error(h[z_j]) error(h*)| < $\epsilon/4$
 - $-z_k$: |error(h[z_k]) error(h)| < $\epsilon/4$
- Show that with high probability: $-|obs-error(h[z_i]) - error(h[z_i])| < \varepsilon/4$
- Completing the proof.
- Computing the sample size.

General ɛ-net approach

- Given a class H define a class G
 - For every h in H
 - There exist a g in G such that
 - $D(g \Delta h) < \epsilon/4$
- Algorithm: Find the best g in G.
- Computing the confidence and sample size.

Polynomials

- Polynomials of degree d:
 - parameters $a_{0,}$..., a_{d} , θ
 - computation: $\Sigma a_i x^i \ge \theta$
- Effective log class size:
 - $-(d+1)\log(1/\epsilon)$

Hyperplanes

- Domain [0,1]^d
- Concept class:
 - parameters w ϵ [0,1]^d and θ
 - computation $\langle w, x \rangle \geq \theta$
- Effective log-class size:
 d log (1/ε)

VC dimension

- Overcoming the discritization
- Intuitively, the number of parameters.
 VC-dim(hyperplans)=d+1
- Avoids the need of discritization
- A necessary and sufficient condition.

Model selection - Outline

- Motivation
- Overfitting
- Structural Risk Minimization
- Hypothesis Validation
- Minimum Description Length

Motivation:

- We have too few examples
- We have a very rich hypothesis class
- How can we find the best hypothesis
- Alternatively,
- Usually we choose the hypothesis class
- How should we go about doing it?

Overfitting

- Concept class: Intervals on a line
- Can classify any training set
- Zero training error: The only goal?!

Overfitting: Intervals

- Can always get zero error
- Are we interested?!

Overfitting: Intervals

intervals01234errors73210

Overfitting

- Simple concept plus noise
- A very complex concept

insufficient number of examples

Model Selection

Introduction to Machine Learning

Theoretical Model

- Nested Hypothesis classes
 - $-H_1 \underline{\subset} H_2 \underline{\subset} H_3 \underline{\subset} \dots \underline{\subset} H_i \underline{\subset}$

– For simplicity $|H_i| = 2^i$

- There is a target function c(x),
 - For some *i*, $c \in H_i$
 - $-\varepsilon(h) = \Pr\left[h \neq c\right]$
 - $-\varepsilon_i = \min_{h \in Hi} e(h)$
 - $-\varepsilon^* = \min_i e_i$

Theoretical Model

- Training error
 - $-obs(h) = Pr[h \neq c]$
 - $-obs_i = \min_{h \in Hi} obs(h)$
- Complexity of h
 - $-d(h) = \min_{i} \{h \in H_i\}$
- Add a penalty for d(h)
- minimize: obs(h) + penalty(h)

Structural Risk Minimization

- Penalty based.
- Chose the hypothesis which minimizes:
 obs(h)+penalty(h)
- SRM penalty:

$$obs(h) + \sqrt{\frac{[d(h)+1]\ln 2/\delta}{m}} \approx \sqrt{\frac{d(h)}{m} \ln \frac{1}{\delta}}$$

SRM: Performance

• THEOROM

- With probability 1- δ
- $-h^*$: best hypothesis
- $-g^*$: SRM choice
- $-\varepsilon(h^*) \le \varepsilon(g^*) \le \varepsilon(h^*) + 2 \text{ penalty}(h^*)$
- Claim: The theorem is "tight"
 - $-H_i$ includes 2^i coins

Proof

- Bounding the error in H_i
- Bounding the error across H_i

HypothesisValidation

- Separate sample to training and selection.
- Using the training

- Select from each H_i a candidate g_i

- Using the selection sample
 - select between g_1, \ldots, g_m
- The split size
 - $-(1-\gamma)m$ training set
 - $-\gamma m$ selection set

Introduction to Machine Learning

Hypo.Validation: Performance

• Errors

 $-\varepsilon_{hv}(m), \varepsilon_A(m)$

• Theorem: with probability $1-\delta$

$$\varepsilon_{hv}(m) \le \varepsilon_A((1-\gamma)m) + \sqrt{\frac{\ln(m/\delta)}{\gamma m}}$$

• Is HV always near-optimal ?!

Introduction to Machine Learning

Minimum Description length

- Penalty: size of h
- Related to MAP
 - size of h: log(Pr[h])
 - errors: log(Pr[D/h])
- Selection rule
 - minimize errors + size(h)

Summary

- PAC model
- Generalization bounds
 - Empirical Risk Minimization
- Model Selection