Generalization Bounds



Overview

* Probably Approximately Correct (PAC)
model

 Basic generalization bounds
— finite hypothesis class
— Infinite hypothesis class

 Model Selection
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Good-Turing problem

Assume you have access to a large data set
of words

Words are drawn 1.1.d from some
distribution

You observe a sample S of size m

QUESTION: what is the probability of the
words you did not observe?
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Motivating Example (PAC)

Concept: Average body-size person
Inputs: for each person:

— height

— weight

Sample: labeled examples of persons

— label + : average body-size
— label - : not average body-size

Two dimensional inputs
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Motivating Example (PAC)

« Assumption: target concept is a rectangle.
» Goal:

— Find a rectangle that “approximate” the target.
« Formally:

— With high probability

— output a rectangle such that

— Its error is low.
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Example (Modeling)

e AsSsume:
— Fixed distribution over persons.

e Goal:

— Low error with respect to THIS distribution!!!
« How does the distribution look like?

— Hig
— Eac
— Hig

nly complex.
N parameter 1s not uniform.

nly correlated.
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Model Based approach

* First try to model the distribution.

 Glven a model of the distribution:
— find an optimal decision rule.

« Bayesian Learning
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PAC approach

e Assume that the distribution is fixed.

« Samples are drawn are 1.1.d.
— Independent
— Identical

e Concentrate on the decision rule rather than
distribution.
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PAC Learning

 Task: learn a rectangle from examples.

* Input: point (X,y) and classification + or -
— classifies by a rectangle R

» Goal:
— In the fewest examples

— compute R’ efficiently
— R’ 1s a good approximation for R
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PAC Learning: Accuracy

Testing the accuracy of a hypothesis:
— using the distribution D of examples.

Error=R AR’
Pr[Error] = D(Error) = D(RAR’)
We would like Pr[Error] to be controllable.

Glven a parameter &:
— Find R’ such that Pr[Error] <e.
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PAC Learning: Hypothesis

T —
— ++

» Which Rectangle should we choose?
» Latter we show It Is not that important.
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PAC model: Setting

A distribution: D (unknown)
Target function: c, from C

— ¢, : X—>{0,1}

Hypothesis: h from H

—h: X—> {0,1}

Error probability:

— error(h) = Probg[h(Xx)= c(X)]
Oracle: EX(c,,D)
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PAC Learning: Definition

C and H are concept classes over X.

C is PAC learnable by H if

There Exist an Algorithm A such that:

— For any distribution D over X and ¢, in C
— for every input € and o:

— outputs a hypothesis h in H,

— while having access to EX(c,,D)

— with probability 1-6 we have error(h) <e¢
Complexities.
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PAC: comments

We only assumed that examples are 1.1.d.

We have two Independent parameters:
— Accuracy €
— Confidence &

No assumption about the likelihood of concepts.
— no prior

Hypothesis is tested on the same distribution as
the sample.
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Finite Concept class

Assume C=H and finite.
— realizable case

his e-bad If error(h)> e.

Algorithm:
— Sample a set S of m(&,0) examples.
— Find h in H which is consistent.

Algorithm fails if h 1s g-bad.
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Analysis

Assume hypothesis g Is e-bad.

The probability that g is consistent:

— Pr[g consistent] < (1-g)™ < e &M

The probability that there exists:

— g IS e-bad and consistent:

— [H| Pr[g consistent and e-bad] < |H| e-¢m
Sample size:

—m > (1/¢g) In (|H|/0)
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PAC: non-realizable case

What happens if ¢, not in H

Needs to redefine the goal.

Let h™ in H minimize the error B=error(h”)
Goal: find h In H such that

— error(h) <error(h™) +¢ = B+¢

Algorithm ERM

— Empirical Risk Minimization
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Concentration Bounds

« Markov inequality
PriX >a] <E[X]/a, X>0

» Chebyshev:
Pr[X > a] < E[X? ]/a

 Chernoff: (X; are Bernoulli r.v.)
Prl -, , X; > p+ A] <exp(- A2/n)
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Analysis

For each h in H:
— let obs-error(h) be the error on the sample S.

Compute the probability that:
— |obs-error(h) - error(h) | < &/2
— Chernoff bound: exp(-(e/2)’m)

Consider entire H : [H| exp(-(g/2)*m)
Sample size
—m > (4/&) In (|H|/5)
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Correctness

Assume that for all h in H:

— |obs-error(h) - error(h) | < &/2

In particular:

— obs-error(h”) < error(h”) + ¢/2

— error(h) -€/2 < obs-error(h)

For the output h:

— obs-error(h) < obs-error(h®)
Conclusion: error(h) < error(h™)+¢
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Example: Learning OR of literals

* Inputs: X, ..., X,

* Literals : x;

* OR functions: X, v X, v X,
« Number of functions? 3n
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ELIM: Algorithm for learning OR

Keep a list of all literals

For every example whose classification is O:
— Erase all the literals that are 1.

Example
Correctness:
— Our hypothesis h: An OR of our set of literals.

— Our set of literals includes the target OR literals.
— Every time h predicts zero: we are correct.

Sample size: m > (1/¢) In (3"/0)
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Infinite Concept class

X=[0,1] and H={c, | 6 In [0,1]}
Co(X)=01ff x<6
Assume C=H:

max

——— — Rt

min

Which c, should we choose in [min,max]?
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Proof |

« Show that the probability that
— Pr[ D([min,max]) >e] <
 Proof: By Contradiction.
— The probability that x in [min,max] at least ¢
— The probability we do not sample from [min,max]
Is (1-g)m
— Needs m > (1/¢) In (1/0)

What’s WRONG ?!
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Proof 11 (correct):

Let min’ be : D([min’,0])=¢/2

et max’ be : D([0,max’])=¢/2

Goal: Show that with high probability

— X_in [min’,0] and

— X, In [0,max’]

In such a case any value In [X_,X,] IS good.
Compute sample size!
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Non-Feasible case

» Suppose we sample:

 Algorithm:
— Find the function h with lowest error!
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Analysis

Define: z; as a €/4 - net (w.r.t. D)

For the optimal h* and our h there are
— z; : lerror(h[z]) - error(h*)| < &/4

— Z,. - lerror(h[z,]) - error(h)| < /4

Show that with high probability:

— |obs-error(h[z;]) -error(h[z])| < /4
Completing the proof.

Computing the sample size.
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General e-net approach

* Given a class H define a class G
— ForeveryhinH
— There exist a g in G such that
—D(gAh)<e/4d
 Algorithm: Find the best g in G.
« Computing the confidence and sample size.
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Polynomials

« Polynomials of degree d:
— parameters a; ..., ay, 0
— computation: T axi >0
 Effective log class size:
— (d+1)log(1/¢)
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Hyperplanes

« Domain [0,1]¢
 Concept class:
— parameters w ¢ [0,1]9 and 6

— computation <w,x>>0
« Effective log-class size:
—d log (1/¢€)
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VC dimension

Overcoming the discritization
Intuitively, the number of parameters.
— VC-dim(hyperplans)=d+1

Avoids the need of discritization

A necessary and sufficient condition.
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Model selection - Outline

Motivation

Overfitting

Structural Risk Minimization
Hypothesis Validation
Minimum Description Length
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Motivation:

We have too few examples

We have a very rich hypothesis class
How can we find the best hypothesis
Alternatively,

Usually we choose the hypothesis class
How should we go about doing it?
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Overfitting

» Concept class: Intervals on a line
 Can classify any training set
 Zero training error: The only goal?!

bt —
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Overfitting: Intervals

bt —

 Can always get zero error
« Are we interested?!
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Overfitting: Intervals

bt —

Intervals 0 1 2 3 4
errors /{ 3 2 1 O
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Overfitting

« Simple concept plus noise

« A very complex concept
— Insufficient number of examples
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CITOT

Model Selection

generalization
error

-~ complexity
penelty

— complexity
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Theoretical Model

* Nested Hypothesis classes
- HcH,cH; e ... cHie
— For simplicity |[H.| = 2
* There Is a target function c(x),
— For some I, ¢ eH;
—¢(h) =Pr [ h =c]
— & = miny, ; e(h)
— & =min; e,
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Theoretical Model

Training error

— obs(h) =Pr [ h =c]

— obs; = min,, _.; obs(h)
Complexity of h

—d(h) = min, {h eH}

Add a penalty for d(h)
minimize: obs(h)+penalty(h)
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Structural Risk Minimization

 Penalty based.

» Chose the hypothesis which minimizes:
— obs(h)+penalty(h)

« SRM penalty:

[d(h)+1]In 2/5 ~\/@
obs(h)+\/ - o In%
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SRM: Performance

« THEOROM

— With probability 1-6

— h™ : best hypothesis

—g" : SRM choice

— g(h") <e(g*)<e(h™)+ 2 penalty(h”)
e Claim: The theorem 1s “tight”

— H; includes 2' coins
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Proof

« Bounding the error in H;
 Bounding the error across H;
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HypothesisValidation

Separate sample to training and selection.
Using the training
— Select from each H; a candidate g;

Using the selection sample
— select between g, ... ,g,

The split size
— (1-»)m training set
— »m selection set
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Hypo.Validation: Performance

e Errors

o 8hv(m)’ 8A(m)
* Theorem: with probability 1-6

\/In(m/§)
M

En(M) < £, ((1=y)m) +

* Is HV always near-optimal ?!
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Minimum Description length

» Penalty: size of h

» Related to MAP
— size of h: log(Pr[h])
— errors: log(Pr[D|h])

 Selection rule
— minimize errors + size(h)
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Summary

« PAC model

e Generalization bounds
— Empirical Risk Minimization
 Model Selection
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