Boosting Algorithms Weak and Strong Learning

PAC Learning model

- Assume a fixed distribution D over domain X
- Examples: <*x*, *c**(*x*)>
 - $-c^*$ is the target function
- Goal:
 - With high probability $(1-\delta)$
 - find h in H such that
 - $-error(h,c) < \varepsilon$
- δ and ε are arbitrarily small.

Weak Learning - Confidence

- Assume we are given a learning algorithm with confidence $\delta = \frac{1}{2}$
 - but arbitrary accuracy $\varepsilon > 0$

Can we boost the confidence?
 – How?!

BoostConfidence Algorithm

- **Input**: Algorithm **A** and parameter $\boldsymbol{\delta}$
- Create $k = log(2/\delta)$ independent problems
 - Sample S_i for *i*-th copy
 - Run Algorithm A on S_i with accuracy $\varepsilon/3$
 - Let h_i be the hypothesis that **A** outputs on S_i
- Take a new sample S of size $m = \varepsilon^{-2} \log(2k/\delta)$
 - Return the best hypothesis h_i on S
 - call it *h**

BoostConfidence Analysis

- Fix copy *i*:
 - The probability that *error* $(h_i) < \varepsilon/3$ at least $\frac{1}{2}$
- The probability that
 - some h_i has $error(h_i) < \varepsilon/3$
 - at least $1-2^{-k}=1-\delta/2$
 - Holds for $k = log(2/\delta)$
- Assume this holds!
 - Namely, some h_i has $error(h_i) < \varepsilon/3$
 - denote it by h_+

BoostConfidence Analysis

- With probability at least 1- $\delta/2$
 - for every h_i : $|error(h_i) obst error(h_i)| \le \varepsilon/3$
 - Chernoff bound using $m = \varepsilon^{-2} \log(2k/\delta)$
- Assume this holds!
- Together, with probability at least $1-\delta$ - $error(h^*) \le \varepsilon$

$$\begin{array}{c|c} h_{\star} & \epsilon/3 & \longrightarrow 2\epsilon/3 \\ & & & 2\epsilon/3 & \longleftarrow \epsilon & h^{\star} \end{array}$$

Weak Learning - Accuracy

- Assume: $error(h,c) < \frac{1}{2} \gamma$
- The parameter *y>0* is small constant, 1/poly
- Intuitively: a much easier task
- Question:
 - Assume C is weak learnable,
 - Is C PAC (strong) learnable?

Weak Learning - Definition

Weak Learning

- Algo A weak learns C using H if
- exists $\gamma > 0$
- for all c in C
- for any distribution D
- for all $\delta > \frac{1}{2}$
- Outputs h in H such that
 - with prob 1- δ
 - $error(c,h) < \frac{1}{2} \gamma$

Strong Learning

- Algo A strong learns C using H if
- for all **ε>0**
- for all c in C
- for any distribution D
- for all $\delta > \frac{1}{2}$
- Outputs h in H such that
 - with prob 1- δ
 - $error(c,h) < \varepsilon$

Weak learning – definition

- Why do we need **ANY** distribution
- Example:
 - Consider the following distribution over bits
 - if $x_1 = x_2 = 0$ then $c^*(x) =$ some hard function
 - otherwise $c^*(x)=0$

- Uniform Distribution
 - Predicting 0 will be correct 87.5%
 - Getting above than is impossible.
- Hard distribution
 only x₁=x₂=0

Three Weak Learners

- One weak learner
 only one thing to do !
- Two weak learners
 - what to do if they disagree?
- Three weak learners
 - Can we improve accuracy?

- Example – weak learners=literals
 - x y x y
 - 11110-1 10011 0
 - 10010-1 10111-0
 - 10111-1 10011-0
 - 10001-1 00100-0
 - 10101 -1 00000 0

Three weak learners

- First weak learner
 - use the distribution *D*
 - $get h_1$
- Second weak learner
 - How can we force new h?
 - Set D_2 s.t.
 - $-h_1$ has error $\frac{1}{2}$
 - Get h_2
 - why $h_2 \neq h_1$?

- Third weak learner
 - What are "interesting inputs"?
 - $-h_2(x) \neq h_1(x)$
 - let D₃ be such inputs
 - get h_3
- How will we predict?
 - If $h_2(x) \neq h_1(x)$ using $h_3(x)$
 - Else $h_2(x)$ (or $h_1(x)$)
 - majority

3 Weak Learners - Performance

- Define D₂ and D₃
- Dist D_2 :
 - Select random b={0,1}
 - If b=0
 - Sample x from D_1 until $h_1(x) = c^*(x)$
 - Else (b=1)
 - Sample x from D_1 until $h_1(x) \neq c^*(x)$
- Dist D_3
 - if $h_1(x) \neq h_2(x)$ sample

• Formally

$$D_{2}(x) = \begin{cases} \frac{0.5}{1-p} D_{1}(x) & \text{if } h_{1}(x) = c^{*}(x) \\ \frac{0.5}{p} D_{1}(x) & \text{if } h_{1}(x) \neq c^{*}(x) \end{cases}$$

$$p = \Pr[h_{1}(x) \neq c^{*}(x)]$$

$$D_{3}(x) = \begin{cases} \frac{D_{1}(x)}{Z} & \text{if } h_{1}(x) \neq h_{2}(x) \\ 0 & \text{if } h_{1}(x) = h_{2}(x) \end{cases}$$
$$Z = \Pr[h_{1}(x) \neq h_{2}(x)] \qquad 12 \end{cases}$$

• Assume all WL are $p = \frac{1}{2} - \gamma$

• Assume all WL are $p=\frac{1}{2}-\gamma$

• Assume all WL are $p=\frac{1}{2}-\gamma$

$$Error = P_{ee} + p(P_{ec} + P_{ce}) = 3p^2 - 2p^3$$

New Error =Old Error* $(1-4\gamma^2)$ small γ ; medium γ ; large γ near 1/2

What about more hypothesis

- The CS way
 - Do it recursively
 - Can push down the error arbitrarily

• We show a more constructive way

ADABOOST: ADAPTIVE BOOSTING

AdaBoost: Overview

- Build a linear classifier
 - basic elements, weak learners
 - Ensemble method
- An "online" approach
 - each time add one more classifier
- Fit the sample **S**

- Each time step *t*
 - have a hypothesis F_t
 - Select a distribution D_t
 - on **S**
 - Find a weak learner h_t
 - w.r.t D_t
 - Add h_t to the hypothesis
 - decide on weight a_t
 - $F_{t+1}(x) = F_t(x) + a_t h_t(x)$
 - predict $sign(F_{t+1}(x))$

AdaBoost: Algorithm

- Weak Learners H $h: X \rightarrow \{+1, -1\}$
- Initialization:
 - Sample $S = \{x_1, \dots, x_m\}$
 - $-D_{l}(x_{i})=1/m$
- Prediction $F(x) = sign(\Sigma \alpha_t h_t(x))$

- Step t = 1, ..., T- Receive h_t
 - WL w.r.t. D_t
 - Define
 - $\varepsilon_t = Pr[h_t(x) \neq c^*(x)]$
 - $\alpha_t = \frac{1}{2} \log (1 \varepsilon_t) / \varepsilon_t$

$$- \text{ Define } D_{t+1},$$

$$D_{t+1}(x_i) = \frac{D_t(x_i)}{Z_t} \cdot \begin{cases} e^{-\alpha_t} & y_i = h_t(x_i) \\ e^{\alpha_t} & y_i \neq h_t(x_i) \end{cases}$$

$$\propto D_t(x_i) e^{-\alpha_t y_i h_t(x_i)}$$
20

AdaBoost: Intiution

- How do we change the distribution?
 - Error \rightarrow weight increases
 - Correct \rightarrow weight decreases
 - Focus on the "hard" examples
- What are the parameters?
 - The weak learning class *H*
 - The number of iterations T
 - Assume to be inputs

- Theorem:
 - Given ε_l , ..., ε_T
 - the error $\boldsymbol{\varepsilon}$ of \boldsymbol{F} is bounded by

$$\varepsilon \leq 2^T \prod_{t=1}^T \sqrt{\varepsilon_t (1-\varepsilon_t)}$$

• Proof based on three claims

Claim 1:

$$D_{T+1}(x_i) = \frac{D_1(x_i)e^{-y_i f(x_i)}}{\prod_t Z_t}$$

where $f(x) = \sum \alpha_t h_t(x)$

Corollary 1: $e^{-y_i f(x_i)} = m D_{T+1}(x_i) \prod_t Z_t$

Proof

• For t+1 we have

$$D_{t+1}(x_i) = \frac{D_t(x_i)}{Z_t} e^{-\alpha_t y_i h_t(x_i)}$$

• unravel recurrence

$$D_{T+1}(x_i) = D_1(x_i) \prod_{t=1}^T \frac{e^{-y_i \alpha_t h_t(x_i)}}{Z_t}$$
$$= D_1(x_i) \frac{e^{-y_i \sum_{t=1}^T \alpha_t h_t(x_i)}}{\prod_t Z_t}$$
$$= D_1(x_i) \frac{e^{-y_i f(x_i)}}{\prod_t Z_t}$$

23

Claim 2:

$$error(F,S) \leq \prod_{t=1}^{T} Z_t$$

 $z < 0 \rightarrow e^{-z} > 1$

$$error(F,S) = \frac{1}{m} \sum_{i=1}^{m} I(y_i \neq F(x_i))$$

$$= \frac{1}{m} \sum_{i=1}^{m} I(y_i f(x_i) \leq 0)$$

$$\stackrel{()}{=} \frac{1}{m} \sum_{i=1}^{m} e^{-y_i f(x_i)}$$

$$\stackrel{()}{=} \frac{1}{m} \sum_{i=1}^{m} mD_{T+1}(x_i) \prod_t Z_t$$

$$= (\prod_t Z_t) \sum_{i=1}^{m} D_{T+1}(x_i)$$

Claim 3:

Proof

$$Z_t = 2\sqrt{\varepsilon_t (1 - \varepsilon_t)}$$

$$Z_t = \sum_{i=1}^m D_t(x_i) e^{-y_i \alpha_t h_t(x_i)}$$

= $\sum_{i:y_i = h_t(x_i)} D_t(x_i) e^{-\alpha_t} + \sum_{i:y_i \neq h_t(x_i)} D_t(x_i) e^{\alpha_t}$
= $(1 - \varepsilon_t) e^{-\alpha_t} + \varepsilon_t e^{\alpha_t}$

Recall $\sum_{i: y_i \neq h_t(x_i)} D_t(x_i) = \mathcal{E}_t$

- Completing the proof
 - $-Z_t$ valid for any α_t
 - Minimize Z_t

$$\frac{dZ_t}{d\alpha_t} = -(1 - \varepsilon_t)e^{-\alpha_t} + \varepsilon_t e^{\alpha_t}$$
$$\alpha_t = \frac{1}{2}\ln\left(\frac{1 - \varepsilon_t}{\varepsilon_t}\right)$$
$$\prod_t Z_t = \prod_t 2\sqrt{\varepsilon_t(1 - \varepsilon_t)}$$

- Theorem:
 - Given ε_l , ..., ε_T
 - the error $\boldsymbol{\varepsilon}$ of \boldsymbol{F} is bounded by

$$\varepsilon \leq 2^T \prod_{t=1}^T \sqrt{\varepsilon_t (1-\varepsilon_t)}$$

• Proof based on three claims

AdaBoost: Fixed bias

- Assume $\varepsilon_t = \frac{1}{2} \gamma$
- We bound:

$$error(F,S) \leq \prod_{t} Z_{t}$$
$$= (1 - 4\gamma^{2})^{T/2}$$
$$< e^{-2\gamma^{2}T}$$

Additional Issues

- Boosting the margin
- Overfitting
- When to stop
- Advantages
- Weaknesses
- Implementation